
Abstract

Cultivar recommendation is crucial for achieving high and sta-
ble yields, and crop models can successfully support it because of
their capability of exploring genotype × environment × manage-
ment interactions. Different modelling approaches have been
developed to this end, primarily relying on dedicated field trials to

characterize the germplasm of interest. Here, we show how even
data routinely collected in operational contexts can be used for
model-based cultivar recommendation, with a case study on phe-
nological traits and field pea (Pisum sativum L.).

Eight hundred and four datasets, including days from sowing
to plant emergence, first flower, and maturity, were collected in
Northern Italy from 2017 to 2020, and they were used to optimise
six parameters (base, optimum, and maximum temperature for
development, growing degree days to reach emergence, flowering,
and maturity) of the crop model WOFOST-GT2 for 13 cultivars.
This allowed obtaining the phenotypic profiles for these cultivars
at the level of the functional trait, without the need of carrying out
dedicated phenotypisations. Sensitivity analysis (SA) techniques
(E-FAST) and the statistical distributions of the optimised param-
eters were used to design pea ideotypes able to maximise yields
and yield stability in 24 agro-climatic contexts (three soil condi-
tions × two sowing times × four agro-climatic classes). For each
context, the 13 cultivars were ranked according to their similarity
to the ideotype based on the weighted Euclidean distance. Results
of SA identified growing degree days to reach flowering as the
trait mainly affecting crop productivity, although cardinal temper-
atures also played a role, especially in the case of early sowings.
This is reflected in the ideotypes and, therefore, in cultivar rank-
ing, leading to recommend a panel of cultivars characterised by
low base temperature and high thermal requirements to reach
flowering. Despite the limits of the study, which is focused only
on phenological traits, it represents an extension of available
approaches for model-aided cultivar recommendation, given that
the methodology we propose can take full advantage of the poten-
tialities of crop models without requiring dedicated experiments
aimed at profiling the germplasm of interest at the level of func-
tional traits.

Introduction
Since the early years of their development, one of the main

targets for crop models has been field decision-making to optimise
crop management (van Keulen and Wolf, 1986). Using parameters
representing species- and genotype-specific morpho-physiologi-
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Highlights
- Crop models are powerful tools to support cultivar choice by exploring genotype × environment × management interactions.
- Crop models require cultivar-specific phenotyping data at the level of functional traits.
- We propose a methodology that uses data routinely collected in operational contexts to derive functional trait values.
- This study is a proof of concept of how to increase the applicability of model-based approaches for cultivar choice.
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cal features and variables related to weather, soil, and management
practices, crop models successfully reproduce crop growth and
development as a function of genotypic, environmental, and man-
agement factors. Despite being a simplification of real cropping
systems, their potential application to an extremely wide range of
agro-climatic conditions makes crop models a valuable support
tool for analysing genotype by environment interactions (Hammer
et al., 2002) and, thus, to predict cultivar performance under vari-
ous conditions (Jeuffroy et al., 2014). Cultivar choice is one of the
most important aspects of crop management, since identifying the
most suitable cultivar for a given environmental condition is a pre-
requisite for achieving high and stable yields (Annicchiarico,
2002). Classical approaches for cultivar recommendation are
based on field trials conducted during multiple seasons and at dif-
ferent sites to explore the genotypic performance while accounting
for the environmental variability expected in the cultivation area.
However, the complexity of genotype (G) by environment (E) by
management (M) interactions may hamper the evaluation of culti-
var performance because it can cause a re-ranking of cultivars as
the environment changes (Lecomte et al., 2010). An extensive and
thorough sampling of the explored environments is, therefore, cru-
cial to get reliable results. However, the availability of resources
often limits the size of the sample of environments. This is why
crop modelling has been identified as a technology that can give a
valuable contribution for extending the considerations that can be
drawn from field trials (Jeuffroy et al., 2014).

Different approaches have been developed to integrate crop
models in cultivar recommendation frameworks. By focusing the
analysis at farm level and on-field pea as a case study, Jeuffroy et
al. (2012) showed how the variability in growing conditions -
including that induced by constraints to fieldwork organisation -
can be successfully explored via crop modelling, leading to alter-
native rankings of genotypes according to farm characteristics.
This farm-to-farm variability in terms of the most suitable geno-
type cannot be accounted for by conventional cultivar evaluation
trials, highlighting the added value provided by crop simulations.
Casadebaig et al. (2016) used a sunflower model and dedicated
plant phenotyping from multi-environment trials to derive geno-
type-specific model parameters, in turn, used to define the best
combinations of cultivar, environment, and management practices.
The study underlined the advantages of analysing local adaptation
when addressing cultivar recommendations (Casadebaig et al.,
2016). More recently, Paleari et al. (2020) proposed to support cul-
tivar recommendation by analysing the similarities between the
model-derived ideotypes defined for specific soil, climate, and
management conditions and the functional trait profiles (Violle et
al., 2007) of available cultivars. The underlying assumption is that,
given that the ideotype represents the optimal combination of func-
tional traits to maximize the objective function in a given environ-
ment, the cultivar(s) most similar to this ideal combination of traits
is the best choice for the same environment. As shown by Paleari
et al. (2020), the functional traits of interest can be measured in tri-
als carried out at a few locations, given that functional traits are
only lightly affected by G×E×M interactions. The latter are then
accounted for by the model while simulating performance traits
(e.g., yield) under various conditions, with performance traits
being emergent properties of the modelled system derived by
explicitly considering the effect of environmental and management
drivers (Hammer et al., 2005). For example, maximum radiation
use efficiency (RUE, gr MJ–1) is a genotype-specific model param-
eter (corresponding to a plant functional trait). In contrast, above-
ground biomass is a variable resulting from the interaction
between the genotype and the environment that can affect RUE

through, e.g., limitations due to unfavourable temperatures, excess
radiation, drought, nutrient deficiencies, and diseases.

However, some of the key functional traits for adaptation to the
target area of cultivation can hardly be measured under field con-
ditions and for multiple genotypes. A clear example is traits deal-
ing with the response to temperature, whose evaluation requires
dedicated experimental trials under controlled conditions (e.g.,
Boote et al., 2018). Attempts have been made to use crop models
and optimization algorithms to support phenotyping for traits that
are hard to be quantified experimentally (Olivier and Annandale,
1998; Luquet et al., 2006; Martre et al., 2015; Onogi et al., 2016;
Messina et al., 2018). This provides a promising approach to
extend the range of functional traits considered in model-aided cul-
tivar evaluation and recommendation.

Focusing on field pea and phenology, this study aims to show
how the Paleari et al. (2020) approach can be extended by using
optimisation algorithms to derive functional traits profiles of mul-
tiple cultivars from data routinely collected under operational
farming conditions. The final goal is to increase the applicability of
model-aided methodologies to support cultivar recommendation.

Materials and methods
The methodology adopted in this study for cultivar recommen-

dation extends the one proposed by Paleari et al. (2020), which is
based on the following steps (Figure 1): i) characterising the avail-
able germplasm for the functional traits of interest; ii) deriving dis-
tributions of functional traits; iii) classifying the target cultivation
area in homogeneous contexts according to the soil, climate and
management factors; iv) using the distributions derived in step ii

                   Article

Figure 1. Flowchart of the methodology used for supporting cul-
tivar recommendation. The methodology, originally proposed by
Paleari et al. (2020), has been extended in this study to allow
using data routinely collected in operational contexts for deriving
functional traits through crop modelling and optimisation algo-
rithms (step 1). 
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and sensitivity analysis techniques to identify the ideal plant type
(i.e., the ideotype) for each of the contexts defined in step (iii); v)
for each context, looking for the cultivar - among those available -
that is more similar to the ideotype, i.e., vi) the cultivar recom-
mended for that context. Step i, ii, and v require that available cul-
tivars are characterised for the functional traits corresponding to
the parameters of the crop model, and - in the original approach
from Paleari et al. (2020) - this requires dedicated experiments. In
this study, functional trait values (dealing with the phenological
response to photoperiod and temperature) were instead derived by
decomposing complex ones (e.g., days to the first flower routinely
determined in operational farming conditions) using optimisation
techniques, analogously to what is done in crop model-aided
genomic prediction studies (e.g., Onogi et al., 2016; Messina et al.,
2018). Technical details for each of the steps are provided in the
following sections.

Crop model and parameterisation for field pea
The generic crop model WOFOST-GT2 (Stella et al., 2014)

was used, which extends the original WOFOST version (van
Keulen and Wolf, 1986). Thermal time accumulation is derived
from mean air daily temperature and a beta response function driv-
en by the parameters’ base, optimum and maximum temperature.
Daily-cumulated thermal time is further corrected to account for
day length by applying a photoperiod factor (0 to 1). Phenological
stages are accomplished when thermal time is equal to - or higher
than - the corresponding requirements (e.g., growing degree days
needed to reach emergence, flowering, and maturity).
Photosynthesis is simulated by integrating the instantaneous gross
CO2 assimilations estimated at three moments during the day and
at multiple canopy depths as a function of intercepted radiation and
a leaf light response curve. Net biomass accumulation is then
derived by subtracting the growth and maintenance respiration, in
turn, estimated from the dry weight of plant organs, the partition-
ing of photosynthates to plant organs in the day, and from mean
daily air temperature. Light interception is estimated as a function
of global solar radiation, leaf area index (LAI), and leaf angle dis-
tribution. To account for the variability in irradiance level along the
vertical profile, direct and diffuse radiation are estimated at several
horizontal canopy layers that increase during the crop cycle until
full canopy development. LAI expansion is derived as a function
of temperature at early crop stages and as a function of a develop-
ment-dependent specific leaf area (SLA) and later partitioning to
leaves. Photosynthetically active (green) LAI is estimated by sub-
tracting from the total LAI the dead LAI units, which are daily
computed as a function of self-shading and leaf senescence.

The species-specific parameterisation of WOFOST-GT2 for
field pea was derived by using the datasets described in detail by
Ravasi et al. (2020), including aboveground biomass, LAI, phenol-
ogy, pod biomass, and yield data collected in seven field trials con-
ducted in Northern Italy during 2016 and 2017. A summary of the
datasets is reported in Table S1. Agreement between observed and
simulated variables was evaluated by using four metrics: Nash-
Sutcliffe modelling efficiency (EF, from –∞ to 1, optimum 1; Nash
and Sutcliffe, 1970), mean absolute error (MAE, from 0 to +∞,
optimum 0), relative root mean square error (RRMSE, from 0 to
+∞, optimum 0; Jørgensen et al., 1986), and coefficient of deter-
mination (R2) of the linear regression between simulated data and
observations.

Decomposition of complex traits via optimisation
Phenological data were made available by Conserve Italia Soc.

Coop. Agricola, is one of the major European companies in the
sector of preserved fruit and vegetable foods. The data refer to 804
datasets with observations of days from sowing to harvest collect-
ed in Northern Italy from 2017 to 2020 (Figure 2). Additional data
on plant emergence [code 09 of the Biologische Bundesanstalt,
Bundessortenamt und Chemische Industrie (BBCH scale for pea;
Meier, 2001)] and first flower appearance (BBCH 60) were also
available, respectively, for 683 and 637 datasets out of 804.
Overall, the database included phenological observations for 13
pea cultivars. When possible, cultivars for which few observations
were available were grouped according to similarities in the
observed length of their phenological phases under different con-
ditions for soil and climate. This allowed minimising the risk of
losing robustness because of unfavourable relationships between
the number of observations and the number of parameters to opti-
mise. This led to eight cultivars that were considered singularly
and two groups of cultivars (Table S2). Given all data referred to
green pea grown for the processed pea industry, harvest occurred
at BBCH codes 76 or 77, which correspond to tenderometer values
ranging from 120 to 130.

Weather data were retrieved from the weather service of the
University of Milan Cassandra Lab (www.cassandralab.com), pro-
viding historical, near real-time, and forecasted daily weather data
at 0.016°×0.016° resolution for the whole European area since 1st

January 2000. Rough data gathered from the international net-
works of NOAA-GSOD (NOAA, 2020a), METAR (NOAA,
2020b), and SYNOP (NOAA, 2020c) and several regional exten-
sion and environmental services are spatially downscaled using
dedicated geostatistical techniques and modelling tools (Mariani et
al., 2012, 2016; Cola et al., 2020) accounting for elevation (USGS
Gtopo30; USGS, 2020). Reference evapotranspiration is estimated
using the Penman-Monteith method (Allen et al., 1998).

For each of the eight cultivars and the two cultivar groups, the
decomposition of the three observed traits (days to emergence,
days to the first flower, and days to maturity) into the functional
traits corresponding to the phenological parameters of the
WOFOST-GT2 model was carried out using the optimisation

                                                                                                                                 Article

Figure 2. Sites where field data were collected.
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method of the bounded downhill simplex (Acutis and Confalonieri,
2006). In practice, the optimisation allowed deriving the cultivar-
specific parameter values able to maximise the agreement between
observed and simulated days to emergence, flowering, and maturi-
ty. The parameters for which the optimisations were run were base,
optimum, and maximum temperature (°C) and the thermal time
thresholds (°C-day) needed to reach emergence (GDDem), flower-
ing (GDDflw), and maturity (GDDmat).

Agro-climatic characterisation of the study area for
cultivar recommendation

After parameterising the crop model for field pea and retriev-
ing cultivar-specific values for phenological parameters, we
focused on the Emilia-Romagna region for the case study on culti-
var recommendation.

By adopting the same approach proposed by Paleari et al.
(2020), the study area was characterised for soil, climate, and man-
agement practices to derive homogeneous contexts. Information
on soil texture from the regional service (https://geo.regione.emil-
ia-romagna.it/geocatalogo/) was used to classify the soil as fine
(clay content >35% and sand content <65%), coarse (clay content
<17.5% and sand content >65%), or medium (all remaining soils)
according to Al Majou et al. (2008). The variability observed in
planting dates (Figure S1) led to identifying two sowing times,
early (1st of February) and late (1st of April), as those representing
the extremes of the main sowing window. Besides sowing time, no
other sources of variability in management were considered, given
that in the study area field, the pea is normally not irrigated, grown
under unlimited conditions for nutrients, and fields are kept pest-,
weed- and disease-free. Weather data from 2009 to 2018 were
retrieved from the same weather database used to decompose com-
plex traits. Weather data were used to calculate the agro-climatic
index SAM (Synthetic AgroMeteorological indicator, Confalonieri
et al., 2010) for each climate cell × sowing time combination, by
considering an average crop cycle duration of 90 days and 70 days
for, respectively, early and late sowings (Figure S2). From the soil
and climate zonation intersection, 24 agro-climatic contexts were
defined (12 for early sowings and 12 for late sowings; Figure 3).

Ideotype design and cultivar recommendation
Paleari et al. (2020) developed the methodology to identify the

cultivar (or the cultivars) most suitable for each of the 24 agro-cli-
matic contexts. This approach is based on the definition of context-
specific ideotypes by using crop modelling and SA techniques and
on the evaluation of the similarity between the ideotypes - which
represent a target combination of functional traits - and the pheno-
typic profiles (at functional trait level) of the available cultivars.
The cultivar (or cultivars) more similar to the ideotype identified
for a given context are assumed to be the one (or the ones) with the
highest potential according to the objective function used to derive
the ideotypes. In this case study, the traits considered are only
those involved with phenological development, and the objective
function is aimed at maximising both yield and yield stability.

The variance-based E-FAST (extended fourier amplitude sen-
sitivity test) global SA method - as implemented in the software
SIMLAB (Tarantola and Becker, 2016) - was used for sampling the
parameter hyperspace to identify key traits for improving yield and
yield stability and to define the ideotypes. The total number of
parameter combinations was set to 1500 (250 × the number of
parameters) according to Confalonieri et al. (2010a). Parameter
distributions were derived from the results of the optimisation-
based decomposition of complex traits performed on the 13 culti-

vars. In particular, the Shapiro-Wilk test (Shapiro and Wilk, 1965)
was first used to test normality. In the case of non-normality, the
Kolmogorov-Smirnov test was used to identify the distribution that
better fitted optimised parameter values.

After most relevant parameters for each of the 24 agro-climatic
contexts were identified through SA, the 1500 parameter combina-
tions - representing potential genotypes of interest - were ranked
according to the objective function (Yindex, Eq. 1) proposed by
Ravasi et al. (2020) to account for both yield and yield stability:

(1)

Where Yi and CVi are the mean and the coefficient of variation
of yield values simulated with the ith combination of parameters
over the ten-year time frame considered in the analysis (i.e., from
2009 to 2018); Ymax and CVmax represent the maximum value of the
metrics that are achieved among the 1500 combinations.

The mean of parameter values of the best 1% of combinations
was used to define the ideotype profile for each of the 24 contexts.

                   Article

Figure 3. Characterisation of the study area according to the soil,
climate, and management conditions. Soil class (Al Majou et al.,
2008): fine (clay content >35% and sand content <65%), coarse
(clay content <17.5% and sand content >65%), medium (all
remaining soils). The Synthetic AgroMeteorological indicator
(SAM; Confalonieri et al., 2010) is the average estimate of the
decade 2009-2018.
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Following the methodology proposed by Paleari et al. (2020),
the similarity between the ideotype profile and functional trait pro-
files of the available pea cultivars was quantified - for each context
- using the weighted Euclidean distance as proposed by Carvalho
et al. (2002). This approach is based on the definition of the opti-
mum range, the optimum trait value, and the relative importance of
each trait, which were derived as the range of variation of the trait
explored among the best 1% of parameter combinations, the value
of the trait defined for the ideotype, and the relevance of the trait
as quantified by the SA index, respectively. The cultivar (among
the 13 available) with the functional trait profile closer to the ideo-
type profile was considered as the recommended one. Further
details on this approach for cultivar recommendation are available
in Paleari et al. (2020).

Results and discussion

Species-specific model parameterisation for field pea
Results of the species-specific calibration of WOFOST-GT2

for field pea (Table S3) show that the model successfully repro-
duced key dynamics involved with crop growth. EF values were
0.78 and 0.88 for aboveground biomass and LAI, respectively, and
the values of the other agreement metrics confirmed the satisfying
model behaviour without relevant systematic over- or under-esti-
mations [coefficient of residual mass (CRM) <|0.2|]. These results
can be considered as satisfactory according to the thresholds for
the metrics proposed, e.g., by Chung et al. (1999), Bellocchi et al.
(2002), Moriasi et al. (2007), although RRMSE for aboveground
biomass was slightly poorer (42.08%). The good performance
achieved for aboveground biomass and LAI was confirmed by the
values of the agreement metrics for the biomass of the different
plant organs, with EF always higher than 0.56, RRMSE never
exceeding 49%, and CRM always lower than |0.1|. Among plant
organs, the highest accuracy was obtained for pod biomass
(EF=0.86; RRMSE=43.51% and CRM= –0.2). Regardless of the
simulated variable, the R2 of the linear regression between

observed and simulated data was always higher than 0.62, with the
best value achieved for LAI (R2=0.99).

Results achieved for the validation datasets were even better
for aboveground biomass, with RRMSE, EF, and R2 equal to
27.01%, 0.85, and 0.91, respectively. Results for the biomass of the
different plant organs were instead similar to those achieved during
calibration, with EF ranging from 0.52 for stem biomass to 0.86 for
pod biomass. In general, a slight overestimation was observed dur-
ing validation regardless of the variable analysed, although CRM
was always lower than |0.19|.

Considering total aboveground biomass, the values of the
agreement metrics are in line with those reported for pea by Ravasi
et al. (2020) and by Coucheney et al. (2015) in studies where the
STICS model was used.

Cultivar-specific decomposition of complex phenologi-
cal traits through optimisation

Results of the cultivar-specific optimisation of phenological
parameters were also satisfactory (Table 1). Average discrepancies
between measured and simulated days from sowing to emergence,
flowering, and maturity were minimal, with the overall MAE (cal-
culated for all cultivars and phenological traits) equal to 2.34 days.
Mean MAE within cultivars ranged from 1.49 days for cv. Amalfi
to 4.69 days for cv. Lambado. Considering MAE, best results were
achieved for the traits days to emergence and days to flowering
(mean MAE calculated for all cultivars were equal to 2.03 and 2.11
days, respectively), whereas results for days to maturity were light-
ly poorer (MAE=2.89 days). The satisfying results were confirmed
by the values achieved for the other metrics, with overall RRMSE
and EF equal to 8.9% and 0.53. However, despite the good agree-
ment achieved in absolute terms (number of days) for days to
emergence, this trait was the one for which the poorest results were
obtained for the other metrics. Model performance was less satis-
factory for this trait, with mean RRMSE for all cultivars equal to
16.44%, whereas it was 4.76% for days to maturity and 5.61% for
days to flowering (5.61). Among the cultivars, the best results were
achieved for the group including cv. Boston and Wav1337 and for
the cv. Provenzale, whereas the poorest for cv. Lambado.

                                                                                                                                 Article

Table 1. Results of the cultivar-specific calibration conducted for phenology.

Metric            Variable*                                                                     Variety
                                            Amalfi        A/K/S        B/W       Calibra       Lambado     Prelado      Prometeus     Provenzale    Waverex     Wolf

MAE (days)        DAS em                 1.74                 3.22              1.66              1.26                   3.13                  3.11                     1.40                       0.97                    2.25             1.57
                             DAS flw                  1.26                 2.06              1.34              1.33                   4.49                  2.72                     2.07                       1.77                    2.26             1.79
                             DAS mat                1.47                 2.36              2.65              2.11                   6.44                  3.33                     2.98                       2.87                    2.63             2.09
RRMSE (%)        DAS em                13.94               24.52             9.63             15.36                 24.85                15.79                   16.15                      7.59                   21.29           15.26
                             DAS flw                  3.28                 4.99              3.07              4.18                  15.37                 6.12                     5.38                       3.99                    5.30             4.47
                             DAS mat                2.39                 3.79              3.62              4.02                  11.49                 4.54                     5.40                       4.39                    4.36             3.57
R2                          DAS em                 0.12                 0.06              0.88              0.45                   0.28                  0.82                     0.33                       0.62                    0.05             0.43
                             DAS flw                  0.92                 0.76              0.97              0.85                   0.15                  0.91                     0.69                       0.92                    0.82             0.90
                             DAS mat                0.95                 0.79              0.95              0.76                   0.19                  0.93                     0.49                       0.96                    0.86             0.92
CRM                     DAS em                 0.03                 0.04               0.0               0.04                   0.11                  0.02                   –0.01                     0.00                    0.06            –0.01
                             DAS flw                  0.00                 0.00              0.00             –0.01                  0.02                  0.01                     0.01                       0.00                    0.01             0.00
                             DAS mat                0.00                 0.00              0.01              0.01                   0.01                  0.00                     0.00                       0.01                  –0.01            0.01
EF                         DAS em                 0.04               –0.14             0.86              0.41                  –0.91                 0.73                     0.27                       0.56                  –0.55            0.35
                             DAS flw                  0.92                 0.75              0.97              0.83                  –0.28                 0.90                     0.64                       0.92                    0.55             0.90
                             DAS mat                0.95                 0.76              0.94              0.69                   0.08                  0.92                     0.23                       0.91                    0.75             0.91
*DAS em, days from sowing to emergence; DAS flw, days from sowing to flowering; DAS mat, days from sowing to maturity; MAE, mean absolute error; RRMSE, relative root mean square error; R2, coefficient of deter-
mination; CRM, coefficient of residual mass; EF, Nash-Sutcliffe modelling efficiency.
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The CRM highlighted a light model underestimation for days
to emergence (mean CRM calculated for all cultivars was equal to
0.03), whereas no systematic under- or over-estimation was
observed for days to flowering and days to maturity. The negative
EF values achieved for the cultivars Lambado and Waverex and for
the group including the cultivars Agami, Keysee and Starlight were
likely due to the low variability observed for days to emergence
among the different environments (Figure S3): this made the mean
of observations an acceptable predictor for single observations
(Criss and Winston, 2008).

The performances quantified by the metrics presented in Table
1 were achieved with cultivar-specific sets of parameter values that
will be considered, hereafter, as functional traits, i.e., the results of
the decomposition of the complex traits days to emergence, days to
flowering, and days to maturity. The distribution of these function-
al traits is shown in Figure 4, whereas the parameters of their sta-
tistical distributions (always normal according to the Shapiro-
Wilk’s test) are reported in Table S4. The profile of each variety in
terms of functional traits is available in Table 2.

Concerning the functional trait base temperature for develop-
ment, values ranged from 2.9°C (group of cultivars including
Boston and Wav1337) to 6°C (cv. Waverex), with an average value
of 4°C. Although the cultivars used in this study refer to
germplasm highly adapted to the growing conditions of Northern
Italy, these values are in line with those reported by other authors.
For example, Olivier and Annandale (1998) reported literature val-
ues for different green pea cultivars ranging from 0°C to 5.5°C,
with a mean value of 3.4°C. Similar values were indicated by
Bourgeois et al. (2000) for four pea cultivars. An average base
temperature of 4°C was also reported by Raveneau et al. (2011) for
shoot elongation of three pea cultivars. Concerning optimal tem-
perature for development, the mean value obtained for the thirteen
cultivars was equal to 24.3°C, with values for the different culti-
vars ranging from 18.9°C (Lambado) to 26.9°C (the group includ-
ing Boston and Wav1337). In contrast, the mean value of maxi-
mum temperature was equal to 33.6°C, with Waverex showing the
lower values (30.6°C). Provenzale the highest (37.2°C), in line
with the values indicated for this trait by other authors (mean of the
values reported equal to 22.8°C and 34.6°C for optimum and max-
imum temperature, respectively; Olivier and Annandale, 1998;
Guilioni et al., 2003; Vocanson and Jeuffroy, 2008). For the three

functional traits involved with growing degree days accumulation,
the comparison with literature values is hampered by different car-
dinal temperatures used for their calculation. For instance, consid-
ering thermal requirements to reach emergence, the average value
obtained in this study (125°C-days; range: 89-147°C-days) is
slightly higher than values available in the literature (close to
100°C-days; Olivier and Annandale, 1998), likely because of dif-
ferent base temperature used for thermal time accumulation.

Concerning the variability observed in trait values among cul-
tivars, GDDem (Figure 4A), GDDflw (Figure 4B), and base tem-
perature (Figure 4D) showed the highest heterogeneity (coefficient
of variation equal to 16.9%, 22.8%, and 21.3%, respectively). This
is partly due to a single value markedly different from the mean
(5.96°C, cultivar Waverex) for base temperature. Less variability
was instead observed for GDDmat (Figure 4C), optimum (Figure
4E), and maximum (Figure 4F) temperature for development, with
a coefficient of variation equal to 11%, 9.5%, and 6.8%, respec-
tively.

Context-specific definition of ideotypes based on func-
tional phenological traits

Results of the SA (Figure S4) highlighted the key role of
GDDflw for both early and late sowings, with this parameter
explaining most of the variability in Yindex regardless of the condi-
tions explored (59.1% and 69.4% on average, for early and late
sowings, respectively). In the case of early sowings, the optimal
temperature for development also played an important role,
explaining, on average, 22.2% of the Yindex variability. This value
decreased to 12.6% in the case of late sowings, highlighting how
thermal adaptation is crucial in early spring. The same considera-
tions applied to base temperature for development, which
explained on average 7.1% of the variability in Yindex for early sow-
ings and slightly less than 5% in the case of late ones. GDDem and
GDDmat were never relevant for yield and yield stability, explain-
ing less than 4% of the variability in the target output.

The ideotypes defined for each of the 24 agro-climatic contexts
were mainly characterised by changes in thermal time require-
ments from emergence to flowering and base temperature (Figure
S5). The variability in the agro-climatic conditions did not affect
the ideotypes structure, with differences among context-specific
ideotypes mainly regarding the intensity of the variation suggested

                   Article

Table 2. Characterisation of the pea cultivars in terms of functional phenological traits.

                                                                                                                                 Variety
                                          Amalfi           A/K/S        B/W     Calibra        Lambado        Prelado    Prometeus    Provenzale   Waverex     Wolf

Growing degree days from           119                      113              145             142                      100                        89                     141                       147                   110              139
sowing to emergence 
(°C-days)                                             
Growing degree days from           405                      486              307             562                      392                      285                    577                       547                   442              500
emergence to flowering 
(°C-days)                                             
Growing degree days from           442                      441              427             367                      397                      481                    380                       459                   334              394
flowering to maturity 
(°C-days)                                             
Base temperature                           4.2                       3.6               2.9              3.9                       4.0                        4.5                     4.3                        3.0                    6.0               4.0
for development (°C)                       
Optimum temperature                 24.5                     25.9             26.9            23.2                     18.9                      24.1                   23.5                      26.0                  26.4             23.7
for development (°C)                       
Maximum temperature                 30.6                     35.3             31.8            35.0                     32.7                      32.5                   36.1                      37.2                  30.6             34.1
for development (°C)                       
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as compared to current cultivars rather than in its direction
(increase or decrease compared to current cultivars). The increase
in GDDflw for the ideotypes as compared to the current cultivars
(represented by the mean of the distribution, Table S4) was close
to 25% regardless of the conditions explored in terms of climate,
soil, and sowing time. For GDDem, the ideotypes showed on aver-
age lower thermal time requirements than current cultivars, espe-
cially in the case of late sowings (–5.8% instead of –3.1% of early
sowings). However, early sowings highlighted a more considerable
variability (standard deviation of the relative change was equal to
2.4% and 0.7% for early and late sowings, respectively). In the
case of GDDmat, the increase in trait values for the ideotypes was
very low, i.e., less than 5% for both sowing windows. A reduction
in base temperature for development was a key feature of the ideo-
types, with an average reduction equal to –12.7% (early sowing)
and –19.4% (late sowing). Again, more significant heterogeneity
across environments was achieved for early sowings: the standard
deviations were equal to 6.9%, whereas it was 1.5% for late sow-
ings. Variation for optimal and maximum temperature was much
lower (less than 10%) regardless of the agro-climatic conditions
explored, as highlighted by the small variability observed (stan-
dard deviation less than 0.5% in both cases).

Model-aided cultivar recommendation
Figures 5 and 6 show the rankings of the thirteen cultivars for

each of the 24 agro-climatic contexts for, respectively, early and
late sowings. The cultivar with the lowest similarity index is the
most similar to the ideotype defined for the same context and,
therefore, it is the one that is recommended for that context.
Results clearly highlighted the three cultivars belonging to the
group A/K/S (i.e., cv. Agami, Keysee, Starlight; Table S2) as the
most suitable according to the conditions explored in the study
area. They turned out to be the best choice for all the agro-climatic
areas and for both early (Figure 5) and late sowings (Figure 6).
Their functional phenotypic profile for traits involved with pheno-
logical development (Table 2) is the most similar to that of the
ideotypes defined for the different contexts, especially for the traits
with the largest impact on yield and yield stability. The similarity
index weights indeed the contribution of the single traits using
their sensitivity metrics (E-FAST total order effect; Figure S4).

Cultivars Amalfi and Wolf also resulted particularly suitable
for the conditions explored in the study area, especially for early
(Wolf) and late sowings (Amalfi). Wolf was indeed identified as
the best cultivar in one case out of twelve in the case of early sow-
ings (Figure 5B) and as a second choice (i.e., the difference in sim-

                                                                                                                                 Article

Figure 4. Violin plots of model parameters representing functional phenological traits, obtained via model-based decomposition of
observed days to emergence, days to flowering, and days to maturity.
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Figure 5. Cultivars ranked according to their similarity to the ideotype defined for each agro-climatic context in the case of early sow-
ings. Green: varieties recommendable; blue: second-choice varieties; red: varieties less suitable (i.e., the difference in similarity index,
respectively, lower than 10% compared to the most similar to the ideotype, between 10% and 20%, and larger than 20%). SAM class:
A: SAM≤–0.35; B: –0.35<SAM≤–0.25; C: –0.25<SAM≤–0.15; D: SAM>–0.15.
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Figure 6. Cultivars ranked according to their similarity to the ideotype defined for each agro-climatic context in the case of late sowings.
Green: varieties recommendable; blue: second-choice varieties; red: varieties less suitable (i.e., the difference in similarity index, respec-
tively, lower than 10% compared to the most similar to the ideotype, between 10% and 20%, and larger than 20%). SAM class: A:
SAM≤–0.35; B: –0.35<SAM≤–0.25; C: –0.25<SAM≤-0.15; D: SAM>–0.15.
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ilarity index lower than 20% compared to the best cultivar) in two
cases (Figure 5A and G). Amalfi was instead identified as a second
choice in four cases out of 24: one case for early sowing (Figure
5G) and three cases for late sowings (Figure 5F, G, and J). Wolf is
probably better suited to early sowings due to larger thermal time
requirements to reach flowering than Amalfi and lower base tem-
perature for development (Table 2). These results are in line with
the fact that Wolf is one of the most adopted cultivars in Northern
Italy (Table S2) and that, together with Amalfi and Starlight, is
among the cultivars recommended by the agronomic services in
the study area (Emilia-Romagna region).

However, more quantitative validation of these results - e.g.,
by using data from multi-environment trials aimed at variety eval-
uation - is not feasible, because in this case study, we focused only
on phenology without considering other traits (e.g., canopy struc-
ture, quality-related aspects, resistance to diseases) that can
markedly affect the productivity and the value of products and,
therefore, that play a key role for cultivar recommendation. The
objective of this study was indeed to present a proof of concept on
how crop modelling can successfully use data routinely collected
under operational farming conditions (mainly dealing with com-
plex traits) to derive cultivar profiles at the level of functional
traits, which, in turn, are used to analyse cultivar similarities with
context-specific ideotypes to support cultivar recommendation.
This study uses a reverse-modelling approach to decompose com-
plex traits in functional ones, which is particularly important for
deriving phenotypic traits that are hard to estimate experimentally
on large germplasms (Martre et al., 2015). The method we propose
in this study extends previous approaches for cultivar recommen-
dation in which the phenotypic characterisation was solely based
on dedicated field trials (Jeuffroy et al., 2014; Casadebaig et al.,
2016; Paleari et al., 2020). This increases the applicability of this
family of approaches for cultivar recommendation by considering
traits that are difficult to measure or whose estimate is costly or
time-consuming.

Conclusions
We showed how reverse-modelling could successfully be used

to derive phenotypic profiles of multiple cultivars at the level of
functional traits, which are usually hard to quantify experimental-
ly, with the ultimate goal of supporting cultivar recommendation
via comparison of these profiles with those of context-specific
ideotypes. The capability of crop models to explore a wide range
of climate, soil, and management conditions while reproducing
G×E×M interactions allows indeed to identify the best cultivar(s)
for specific agro-climatic contexts with high spatial granularity.
Furthermore, the approach presented in this study extends avail-
able methodologies for model-aided cultivar recommendation,
using data referring to complex traits easy to measure under oper-
ational farming conditions - like, e.g., date of occurrence of major
phenological stages - to derive the values of functional traits.
Therefore, this approach can be considered particularly promising
for increasing the applicability of model-aided cultivar recommen-
dation under operational conditions. It does not require dedicated
experimental activities targeting the direct profiling of available
cultivars at the level of functional traits.

Despite the study’s limits, which considers only traits involved
with phenology, it represents proof of how data are easy to collect
(e.g., by technical assistance services in operational farming con-
texts) can be successfully used to optimise cropping systems man-

agement using advanced simulation techniques. Future develop-
ments will focus on applying and evaluating the same methodolo-
gy for traits related to product quality, which is routinely measured
by the processed pea industry when the row material is committed
to the processing plant (e.g., tenderness and sugar content in case
of a green pea). Traits involved with product quality play indeed a
relevant role in defining the price of raw materials and the destina-
tion of the processed products and are often largely affected by
G×E×M interactions. This makes a careful cultivar choice a key
step in the production chain.
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