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Abstract

Land evaluation has a leading role in the sustainable management
of natural resources. By integrating information from different disci-
plinary fields and at different spatial scales, concerning soils, climate,
vegetation, geomorphology, economic and social drivers, it assesses
alternative land uses with consideration of socio-economic and envi-
ronmental objectives. Over time, the increasing complexity of such an
analysis has shown the limits of traditional approaches proposed by
Food and Agricultural Organisation and other international institu-
tions in the second half of the 20t century, to deal with relatively new
phenomena, such as those related to global change. Among the recent
methodological proposals, agro-ecological zoning (AEZ) has gained
increasing attention of scholars. Global change affects all the variables
to be considered for land evaluation and in particular those affecting
land productivity and economic consequences, but only rarely they
have been jointly considered. Moreover, the possibility of simulating
agro-ecosystems over long-time periods in many parts of the world is
limited by the great efforts required for data acquisition and the many
sources of errors. Qur study aims to demonstrate the opportunity to
explore the use of virtual territories as analogues of controlled field
experiments, in order to carry out scenario analysis of agro-ecosys-
tems, which may exist or not at the moment. Virtual territories exhibit
morphological, ecological and land cover features statistically similar
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to selected existing territories. Provided this basic prerequisite is met,
a virtual territory is built as a coherent set of geographic information
system layers and databases on which the effects of global change phe-
nomena (e.g., climate and land use changes) can be simulated under
different scenarios. The advantages are: the possibility of having full
control of the experimental conditions; the possibility of setting up fac-
torial experiments with combinations of different typologies or levels
of climate, physical conditions, socio-economic development, efc.; the
efficiency and the flexibility of the tools adopted to easily generate
realistic landscape and their variants. The approach is demonstrated
through the development of erosion analysis under climate change
scenarios.

Introduction

In the past, the first concern about agricultural land was its poten-
tial crop productivity and this issue was dealt with land evaluation. In
1976 the Food and Agriculture Organisation (FAQ) defined land evalu-
ation as (FAO, 1976): the assessment of land performance when used
for specified purposes. It involves the execution and interpretation of
basic surveys of climate, soils, vegetation and other aspects of land in
terms of the requirements of alternative forms of land use.

Since then, land evaluation has taken on a leading role in the sus-
tainable management of natural resources. In fact, it integrates infor-
mation from different fields and at different spatial scales, including:
type of soil, climate data, vegetation, geomorphology, economic and
social drivers, to find an optimal balance between the needs of human
societies and the preservation of natural resources in the long term.
From land planning to evaluate specific uses of the land, to the
improvement of their management and the prevention of soil degrada-
tion dynamics, land evaluation over the years has become a useful tool
to ensure a sustainable exploitation of a territory and to preserve its
productive and environmental functions (Giordano, 1999; Eliasson,
2007). Specifically, a rational land evaluation should provide an initial
analysis of the biophysical component of the territory, to determine the
suitability of the soil in relation to generic uses, such as agricultural,
forest or natural uses (land capability) or to specific uses (land suit-
ability), followed by a second step defining possible alternative uses in
consideration of different socio-economic scenarios (Giordano, 1999).

Land evaluation deals with issues to which there is no unique
answer. The dynamism of human societies and market conditions,
together with the variability of environmental features, at different
scales, set limits to our ability to predict specific use destination for a
given territory. Moreover, our spatial knowledge of the territory is not
perfect and the temporal dimension further expands the margins of
error in any evaluation. In addition, the concepts of use and suitability
cannot be quantified in absolute terms, while they are usually referred
to specific purposes and developed in comparative terms (Giordano,
1999). Therefore, over time, the increasing complexity of such an
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analysis has set the limits of conventional approaches, while scientists
have started to investigate climate change and land use and cover
change phenomena. From the initial focus local productivity and
rational land use concerns, scientists’ efforts have turned towards the
study of complex systems and global dynamics, thus developing new
methods and tools. Among these, the agro-ecological zoning (AEZ)
methodology was developed by FAO in collaboration with the
International Institute for Applied Systems Analysis (IIASA). The proj-
ect dates back to 1978, but only in the last twenty years this assessment
methodology has spread around the world, thanks to the potential
offered by the latest technologies and, in particular, by spatial databas-
es of resources available on a global scale (Eliasson, 2007). The AEZ
methodology consists of separating a territory into spatial units of
small size and homogeneous within them for soil suitability compared
to specific uses, environmental impact and potential production
(Eliasson, 2007).

The recent technological improvements have also allowed the devel-
opment of software tools to monitor the condition of current resources
and the evolution of land use systems (Verburg and Van De Steeg,
2009). In this context, modelling has become a tool to explore different
scenarios and alternatives, to improve decision-making processes in
land use, land cover changes and global change management (Verburg
et al., 2006). Therefore, the use of mathematical models have allowed
better understanding of the drivers that determine these events and
scenario analysis has become a widespread tool for exploring land use
systems and their potential evolutions. Scenarios are not used to make
predictions but rather to direct the decision making process in agree-
ment with different alternatives, in contexts where uncertainties are
managed according to specific assumptions. Scenarios then allow the
comparison of potential consequences that would result from decisions
regarding land use, land cover changes and global change management
(Verburg et al., 2006).

Several models have been developed. Most of them use low-resolu-
tion data (>1x1 km), because of the difficulty in obtaining high reso-
lution ones. These are models useful to build land use scenarios from
global to national scale. Few are instead the models that employ data
from high-resolution raster maps, with a pixel size lower than 1x1 km;
among these, probably the best known is CLUE-S. Unlike CLUE, useful
from global to continental scale, the CLUE-S is not based on sample sur-
veys and census data but on raster maps stored in a geographic infor-
mation system (GIS) environment with a hierarchical structure, to
analyse the evolution of land use systems with a multi-scale approach
(Verburg et al., 2002). The CLUE-S model calculates the probability for
each pixel to belong to a defined land use class, according to a logistic
regression in which the independent demographic, economic, techno-
logical, political, institutional, cultural and biophysical variables are the
drivers of change (Verburg ef al., 2002). For instance, the allocation of
paddies in land use systems is modelled according to elevation, slope,
distance from cities and demographic density, but without considera-
tion of soil properties.

Another model that employs databases with a resolution lower than
1x1 km is the Patuxent landscape model. This model focuses on the
reconstruction of the ecosystemic component (ecological module) in
relation to economic and demographic factors (economic module), to
guarantee the best land use management to preserve good water qual-
ity, at basin scale. Within the ecological module, the model includes
information such as ecological successions, quantity and quality of sur-
face water, the depth of aquifers, health conditions and vegetation
growth, health conditions of habitats and their fragmentation.
Economic and demographic dynamics concerning land uses and agri-
cultural practices are instead processed within the economic module
(Voinov et al., 1999). The geomorphologic and biophysical information-
al component of soils is not included in the model.
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At global scale, some modelling efforts have been recently published,
but the use of a low spatial resolution database (from ~10x10 km to
~55x55 km) affects results because of excessive approximation. In
fact, these models are not oriented to the modelling of land use systems
in detail, but only of the main environmental dynamics at global scale
(Meiyappan et al., 2014).

Taking all this into account, both AEZ methodology and model-based
approaches appear as useful tools to analyse the impacts of climate
change, land use and cover change phenomena on socio-ecosystems
and on global biochemistry at different spatial and temporal scale.
However, it appears also that most of recent studies do not consider soil
features at large scale as well as biophysical and geomorphological fea-
tures, thus loosing the possibility of considering some of the most
important phenomena, which determine the capability of biological
systems to provide mankind with resources. This is often due to the
lack of high-resolution data, but more broadly it is due to the limited
efforts put on the integration of multidisciplinary knowledge. A likely
consequence is a bias in the results obtained, affected by the lack of
consideration of important factors - erosion phenomena, for instance -
limiting potential production, in particular when land use dynamics are
analysed over the long time periods typical of climate change studies.
For example, most of socio-economic studied on agriculture and cli-
mate change studies do not consider any long-term change in land suit-
ability and productivity and their feedback effects on socio-ecosystems.
On the contrary, the European Thematic Strategy for Soil Protection
whose related proposal for a common framework directive
[COM(2006)232], identifies erosion, soil organic matter decline, com-
paction, salinisation and landslide events as the main risks to soil con-
servation and long term productivity of agro ecosystems (European
Commission, 2006).

With the aim of overcoming some of the problems mentioned above,
in this work we explored the possibility of developing virtual territories
with suitable software, statistically replicating the morphological, eco-
logical and land cover features of real environments, on which to
explore scenarios of land use change and climate change phenomena.
For greater clarity, we intended the statistical replication of real envi-
ronment features as a way to generate similar features in a new, not
existing and virtually developed system, the so-called virtual territory.
We define it as an infrastructure of coherent data with internal consis-
tency between spatial variables, to which we can apply existing models
or test new ones in order to carry out scenario analyses. The ambition
is to use such models in a controlled spatial environment as an ana-
logue of punctual agronomic experiments in parcels or laboratory. As in
the case of punctual experiments, there is no will to substitute studies
on real world territories, but just to complement them with more oppor-
tunities to explore the complexity of agro-ecosystems and provide
opportunities for what-if simulations. In order to guarantee a robust
statistical link between the real and the virtual territories, the high-res-
olution databases of biophysical and geomorphological information
available in well-studied areas should be studied to assess the relation-
ships among the most important variables.

Provided that strong statistical relationships between spatial vari-
ables can be described, they can be later on used to guide the design of
internally consistent virtual analogues and of variants of existing land-
scapes, which can be utilised for scenario analysis. Therefore, the pro-
posed approach is intended to expand the opportunities for scenario
analysis, overcoming the constrains mentioned above limiting the pos-
sibilities to conduct long-term analyses in the real world in fields relat-
ed to global change sciences, such as climate change adaptation in the
agricultural sector.

In the Materials and methods section we first present fractal theory
as the method to build a virtual digital elevation model (DEM) as the
geomorphological basis of the virtual territory and we describe the area
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selected as a reference for the application. Later on, we introduce the
methods adopted to build the GIS internally consistent layers with all
the information required to generate a virtual dataset with statistical
fitting to those of the existing territory and we introduce the erosion
model adopted to demonstrate the approach. In the Results section we
present the scenarios considered and the outputs of spatial simulations
as raster maps previously generated. The proposed approach and the
results obtained are discussed in the fourth section of the paper, fol-
lowed by some conclusive remarks and the identification of future
research needs.

Materials and methods

Fractals and the real world

Real world objects, such as a landscape identified as a portion of
land surface, may exhibit two different complexity types: fractal and
not fractal. Non-fractal complexity is the result of a series of separat-
ed and uncorrelated events that have occurred over time. Because of
the mutual independence of these events, it is really difficult to inter-
pret the features that have determined this complexity. Conversely,
fractal complexity characterises those features that exhibit statistical
self-similarity, namely similar shapes repeated within a specific
range of scales, defined as complex geometric objects resulting from
the repetition of the same morphology at different scale of magni-
tude, between a lower and an upper crossover scale (Ebert et al.,
2003). A wide variety of natural phenomena show fractal structures,
such as for example: lightning, trees branches, and vascular systems,
but also the morphology of natural surfaces (e.g., mountains) are
known as statistical self-similar fractals (Ebert ez al., 2003) and their
local fractal dimension can be estimated using statistical calculation
procedures (Eastman, 2009). This is estimation because a real sur-
face is the result of a combination of different events, which, as stat-
ed above, may determine both fractal and non-fractal shapes. If a nat-
ural landscape can be described through the parameters of its fractal
dimensions, then the reproduction of those shapes and phenomena
should be possible through the procedural generation of synthetic
landscapes, based on algorithms that generate fractal surfaces. In
practice, the shapes of a fractal surface depend on the basis function,
a well-defined mathematical function identified by a specific ampli-
tude and spatial frequency (Ebert et al., 2003). The fractal dimension,
also called roughness, is the main property that characterises a frac-
tal surface and it is given by the Euclidean dimension 2 to which a
fractional part is added (e.g., 0.3), defined as fractal increment.
Procedural fractal surface generation consists of an iterative process
where the shape defined by a basis function is repeatedly added and
rescaled to build a complex surface. The amount with which spatial
frequency changes between subsequent scales are defined by lacu-
narity: with a lacunarity set at 2, the spatial frequency doubles while
the added shape size halves (Ebert et al., 2003).

Real topographic surfaces exhibit a variable local fractal dimension
because of their heterogeneity deriving from geological features and
other morphogenetic phenomena (Gallant et al., 1994).

Therefore, multiple fractal dimensions are required to generate vir-
tual heterogeneous surfaces as in the real world. Musgrave pioneered
the development of procedures and computer codes to build first mul-
tifractal models in order to increase realism, with the aim of repro-
ducing erosion dynamics with so-called ridge multifractal models
(Ebert et al., 2003). The present work develops upon those seminal
works, and adopts a multi-fractal approach to generate realistic virtu-
al territories.
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Methods and tools for the generation of fractal sur-
faces to reproduce morphological features of an exist-
ing territory

Having opted for a methodological approach based upon multifrac-
tals we reviewed the existing software tools, but we did not find a solu-
tion allowing us to have full transparency and control of the implement-
ed procedure and providing all the elaboration routines required. To
build the virtual morphological surface, i.e., DEM as defined in GIS
technology we adopted the Blender software and its plug-in ANT
Landscape, while the other required spatial data processing functions
were found in two GIS software tools: QGIS with its GRASS extension,
and TerrSet.

Firstly, a portion of territory of the Veneto Region was identified and
its morphological features quantitatively analysed. Secondly, a series of
virtual DEMs ware generated by using the ANT Landscape tool with
varying parameters, and then compared ex post with the real world,
focusing in particular on their fractal dimension values and related
indices. The virtual DEMs, along with the DEM of the existing area,
were decomposed in the frequency domain with the 2-dimension-fast
Fourier transform (2D-FFT) routine provided by the TerrSet GIS soft-
ware. The 2D-FFT is a useful tool for analysing the hierarchical struc-
ture of territory components of different scale (Florinsky, 2012), by
decomposing the cosine (real) and the sine (imaginary) components.
The module returns a cosine component raster image, a sine compo-
nent raster image and a power spectrum raster image (Eastman, 2009).
The power spectrum image can be interpreted in the following way: i)
pixel values represent power spectrum according to the following equa-
tion:

Power Spectrum = In(1+ amplitude?) )

ii) the amplitude includes the information of both the real and the
imaginary component; iii) the frequency is identified by the location of
each pixel compared with the central point; iv) the central pixel repre-
sents zero frequency while those pixels which are located on the edge
of the image represent the maximum frequency (the Nyquist frequen-
cy) and the minimum wavelength; v) frequencies of pixels and the
Nyquist frequency depend on the number of rows and columns as well
as on spatial resolution (Eastman, 2009); consequently, assuming that
these features are shared between two DEMs, their power spectrum
identifies the same frequencies.

The power spectrum is interpreted as the degree of resonance of all
different frequencies (Eastman, 2009), namely the hierarchical struc-
ture of the geomorphological components of the DEM, no matter what
the original position of each shape is. Low frequencies identify small-
scale morphologies and average slopes while high frequencies are
interpreted as high scale shapes and higher slope values (Toth et al.,
2014).

Having identified the virtual DEM with the best fit to the original
landscape, we moved to demonstrate its use by implementing a simple
model for erosion simulation over long time period and under different
climatic scenarios. AEZ were adopted to provide a concise description
of the combinations between the most important physical features of
both the real and the virtual territories and allow for cross-compar-
isons.

Development of scenario simulations on the virtual
territory
The most widely used empirical model to quantitatively estimate soil

erosion is the universal soil loss equation (USLE) (Wischmeier and
Smith, 1978), and its more recent evolution into the revised USLE
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(RUSLE) (Renard et al., 1997). Both those models estimate the annual
loss of soil, caused by sheet and rill erosion but the RUSLE was specif-
ically designed to exploit the potential of GIS software for spatial analy-
sis (Bosco et al., 2008) and it was thus selected for this study:

A=R-K-L-S-C-P @)

with:

A = annual soil loss (t-ha-!-yr1)

R = rainfall erosivity factor (Mj-mm-ha-!- h-! - yr-1)

K = soil erodibility factor (t-ha-h-ha-l-Mj!- mm)

LS = slope length factor (dimensionless);

C = cover management factor (dimensionless);

P = human practices aimed at erosion control (dimensionless).

Effects of hypothetical climate changes scenarios were implemented
by recalculating the R factor, assuming monthly variations of available
rainfall data for the existing territory to reproduce the effects of an
exacerbation of the characteristics of Mediterranean climate, with
intense precipitation concentrated in shorted periods over the autumn
and winter seasons, as foreseen in the most recent report of the
Intergovernmental Panel for Climate Change (IPCC, 2013).

Data stored in the digital soil map of the Veneto Region, with
detailed information from regional to sub-system level were used to
describe land suitability through the identification of AEZ for rainfed
agriculture, following the criteria proposed by Eliasson et al. (2007).
AEZs were also adopted as a key to provide a concise description of land
features and to maintain internal consistency between the variables of
the virtual territory. Moreover, AEZs were used to monitor changes in
land suitability over time, as affected by the simulated erosion phenom-
ena. Results were stored in a vector GIS layer with polygons charac-
terised by unique combinations of six AEZ criteria (slope, soil depth,
soil fertility, soil drainage, soil texture and soil chemistry), identified
by a 6-digit code (e.g., 111111 for the AEZ with optimal characteristics,
or no limitations).

Results

Selection of an existing territory and generation
of statistically similar virtual territories

An existing territory has to be identified and studied in order to pro-
vide the information needed to generate a coherent virtual dataset with
physical features statistically similar to the real one.

We selected an existing territory, located between the landscape
areas of Monti della Lessinia and Alta Pianura Veronese included in the
Piano Territoriale di Coordinamento Regionale (PTRC) of the Veneto
Region, with the aim of using regional to local datasets. Figure 1 shows
the selected area (Regione Veneto, 2013).

The area exhibits a positive altitude gradient from south to north,
until reaching about 1549 m. Alpine foothills (Prealpi) slope down
towards the south plains around Verona with significant changes in
vegetation and land uses in relation to elevation. There is a high den-
sity of small urban cores in the valleys, under 1000 m of altitude. In the

Figure 1. 3D view of the selected study area in Google Earth, with
frame coordinates: North latitude 45° 65’ - 45° 39’; Longitude
10° 83’ - 11° 21°.

Table 1. ANT Landscape parameters with their description and the values used within this study.

Subdivisions Detail level of the landscape 1024
Mesh size Mesh size in the vector field 2.0
Basis Basis functions with their modifications Perlin
Type Basis functions with their modifications Multifractal
Random seed [nitial generated point 49
Noise size Amplitude of noise function 1.00
Depth Number of frequencies (iterations) 7
Dimension Complement to 1.0 of the fractal increment, corresponding to the roughest area 0.20, 0.30, 0.40, 0.50, 0.60, 0.70
Lacunarity Gap between subsequent frequencies 2.00
Offset To build the ridge basis function from the parameter Basis 0.80
Gain Scale factor 2.00
Height Non-fractal modifications of the mesh 0.12
Offset (not fractal) Non-fractal modifications of the mesh 0.00
Plateau Non-fractal modifications of the mesh 1.00
Sea level Non-fractal modifications of the mesh 0.00
Falloff To constrain modification only in a portion of the mesh None
Strata To generate a surface stratification effect None
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plain rural areas are opposed to more densely populated urban centres
around the city of Verona. The geomorphology is mainly affected by tec-
tonic movements and the erosion of rainwater. The selected area is
generally constituted by calcareous lithotypes, which determine the
almost total absence of surface hydrography (Regione Veneto, 2013).

By using the parameters in Table 1, we generated six virtual DEMs
with varying values for the parameter Dimension.

Linear regression between the fractal dimension and the average
values of the power spectrum calculated on raster maps of virtual DEMs
with 2D-FFT was calculated to guide the generation of the multi-fractal
DEM (Figure 2).

According to this statistical relationship, we calculated an average
power spectrum of 15.04 on the DEM of the selected area and we esti-
mated a Dimension of 0.41. With the highest fractal dimension of 2.59,
we generated a new virtual DEM in ANT landscape. After having geo-
referenced it and rescaled the vertical scale to the elevations of the
selected area, we got a virtual DEM, with the statistics comparable to
the real one (Table 2 and Figure 3).

With the module r.regression.line of the GRASS plug-in of QGIS, we
estimated a Pearson’s correlation coefficient of 0.79 between the power
spectrum maps of the existing and of the virtual DEMs.

Implementation of the revised universal soil loss
equation model and agro-ecological zoning
classification

R factor defines the influence of climate on erosion phenomena, com-
bining the effect of the mechanical action of rainfall with superficial
runoff, both laminar and rill (Bosco et al., 2008). As previously done by
Borin and Bonamano (2005) to estimate the rainfall erosivity factor for
some areas of the Euganean Hills (Veneto Region, not far from the
selected area), the R factor (Mj:mm-ha!- h-! - yr!) was calculated by
using the following method proposed by Arnoldus (1980) on monthly
rainfall data, available for the selected area from 1994 to 2012:

R=417- 31 (pz/P) —152 ®3)

with:
p = monthly rainfall (mm);
P = annual rainfall (mm).

This equation was useful to describe rainfall seasonality patterns
both in the current climate and in the hypothetical ones generated for
scenario. We estimated R-values of 287.10 Mj-mm-ha-!- h-! - yr! for
plains and hilly areas and 668.22 for mountainous areas of the selected
territory. Those values were then applied to corresponding areas of the
virtual landscapes with the raster calculator of QGIS, thus producing
the R factor map of the virtual DEM.

LS factor represents the area where the superficial runoff diverges
or converges and defines the upslope contributing area estimated
according to Bosco et al. (2008) with the following equation:

2213 ltg23-6lsina

LS = (Flow,acc-ceil,size)o"l’ . (_1,5 + 17 ) (4)

with:
Flow_acc = flow accumulation (the number of pixels through which
water flows towards a specific pixel);
o = slope;
cell_size = pixel size.

Starting from the virtual DEM, the flow accumulation map was cal-
culated by using GRASS module r.watershed, while the slope map was
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generated with the geomorphological analysis tool of QGIS, and the LS
factor map was generated by using the raster calculator.

C factor is the ratio between soil loss in defined land cover condi-
tions and the erosion that would occur on a soil without any protection.
To generate the C factor virtual map it was necessary to reproduce a
coherent land cover distribution starting from the CORINE land cover
(CLC) 2006 map for the selected area, with the aim of assigning C fac-
tor values available from literature (Bosco et al., 2008) to land cover
classes. Having produced the required set of map layers as described
above, the map of AEZ of the virtual territory was produced by means of
map overlaying, with the coding system presented in Table 3, ending up
with 33 different AEZs. Afterwards we performed a cross-tabulation
between the AEZ raster map and the CLC map reclassified in two levels,
with the aim of calculating the percentage proportion of CLC category
distribution. The cross-tabulation of AEZ versus land cover classes for

08

or 4 *

05 +
04

0.3 +

y=-03786x+60974  (2)
RY= 0.9679

02 ¢

01 + T
140 144 148 152 156 160

Average power spectrum

Figure 2. Linear regression between ANT Landscape parameter
Dimension and average power spectrum values of virtual digital
elevation model.

Figure 3. 3D view of the virtual digital elevation model generated
with ANT Landscape.

Table 2. Elevation and slope statistics of existing and generated
digital elevation model.

Elevation (m) Lowest 24.20 4.88
Average 398.93 453.60
Highest 1551.74 1594.39
Range 1527.55 1589.51

Slope (degree) Lowest 0.0000 0.0044
Average 11.4331 11.2852
Highest 74.3675 71.9162
Range 74.3675 71.9118

DEM, digital elevation model.
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the existing territory was used as a key to reproduce realistic combina-
tions between those two layers in the virtual landscapes, in order to
assign meaningful C factor values. Therefore, we created a random dis-
tribution of 1000 vector points within the extent of the virtual DEM and
with such points we generated a layer of Voronoi polygons. Afterwards,
we overlaid that layer on slope classes used for AEZ classification and
we assigned the slope class value to each polygon of the virtual DEM
and we used the resulting map to randomly distribute AEZ codes, with
the constrain of meeting their proportions in the real world. In this way
we obtained a vector layer that shows a new virtual distribution of
AEZs, consistent with the slopes of the virtual DEM. Eventually, the
cross-tabulation between AEZ and land cover guided the assignment of
CLC categories to the virtual territory and the calculation C factors.
The K factor was calculated on the basis of soil properties derived
from the digital soil map and assigned through the virtual map of AEZ.
It was estimated according to Romkens ef a/. (1986) on the basis of a
regression conducted on a large global dataset of K factor values, which
produced the following equation [revised by Renard et al. (1997)]:

K = 0.0034 + 0.0405 - exp [—0.5 - ((log Dy + 1.659) - 0.7101-1)2] )
with:
D, = exp[¥ fi - In((d; + di_y) - 271)] ()

where:
Dy is the weighted medium diameter compared to dominant texture
classes (mm);
d; is the highest diameter of each texture class (sand, silt and clay)
(mm);
d;, is the lowest diameter of each texture class (mm);
f is fraction of each texture class. With the equations (5) and (6), we
estimated a K factor value of 0.0088 for AEZs which have soils with
coarse texture and 0.0404 for AEZs with medium to fine texture.

In this study we did not entered into the detail of considering differ-

ent management practices and then the P factor was set to 1 for all
AEZs. The raster calculator tool of QGIS was used to run the calculation
of erosion, producing a RUSLE map, which presents the average loss of
soil in tons per hectare per year for the virtual territory (Figure 4). The
results were compared to those obtained by ARPAV (2008; P.29) for the
reference territory, obtaining a good match, with values for the plain
below 2, and increasing values in steep slope area, which could episod-
ically fall into the class above 40 tons.

5 10 km Legend
| =——
Annual soil loss (tons-(hectare”-1)-(year™-1})
B 02 [ 2040
B 25 [ 40-100
510 [N <100
10-20

Figure 4. Annual soil loss related to the spatial resolution of the
virtual territory.

Table 3. Classification of the criteria chosen to build agro-ecological zoning for rainfed agriculture developed starting from those pro-

posed by Eliasson ez al. (2007).

raint

Slope None <8° 100000
Low >=8° and <16° 200000
High >=16° and <30° 300000
Very high >=30° 400000

Soil depth None >100 cm 10000
High >50 cm and <=100 cm 30000
Very high <=50 cm 40000

Soil fertility None Soils with high natural fertility 1000
High Soils with medium natural fertility 2000
Very high Soils with low natural fertility 3000

Soil texture None Medium to fine 100
High Soils with heavy cracking clays 200
Very high Coarse texture or rocks and stones at the surface 300

Soil drainage None Excessively and well drained soils 10
Very high Poorly and imperfectly drained soils 20

Soil chemistry None All other soils 1
Very high Soils with severe salinity, alkalinity or gypsum limitations 2

DEM, digital elevation model.

[Italian Journal of Agronomy 2016; 11:743]

[page 257]



The final erosion calculation concerned the estimation of the depth
of eroded soil, in order to assess whether erosion phenomena could
determine a change in the AEZ classification. Assuming a bulk density
of 1.38 g-cm™ for the AEZs with medium to fine texture and 1.61 g-cm
for those with coarser textures we calculated the tons per centimetre of
depth on each pixel area: 11.62 for the AEZs with finer texture; and
13.55 for the AEZs with coarser texture. Figure 5 presents the spatial
results of the simulations. The first map presents the initial soil depths
of the virtual territory, while the maps below show the results of the
RUSLE model over a time span of 50 and 100 years with the current cli-
mate. Climatic scenarios were analysed by varying monthly rainfall
data as mentioned above, to apply Arnoldus’s method (1980) to recalcu-
late R values representing dryer summers and wetter winters, together
with limited decreases of annual rainfall (Table 4).

Table 5 shows the relative and the absolute amount of soil eroded

pag

after 100 years of erosive processes, in the different rainfall scenarios.

While simulations with current climate showed only very limited
effects on AEZ classification caused by variations of soil depths as a
consequence of rainfall after 100 years, hypothesis 1 and even more
hypothesis 2 climates showed non negligible effects. Current climate
variations of AEZ surface areas ranged between 0 and 9.3%; hypothesis
1 generated changes in soil depth causing changes in AEZ areas up to
12.2%; and hypothesis 2 produced changes up to 24.3%. Running the
RUSLE model on the virtual territory for 100 years, it turns out that
14.01% of the total extent is still assigned to the most suitable AEZ for
rainfed agriculture code 111111. On the other hand, 0.23% of the sur-
face is completely eroded, while many AEZs undergo a transition in
terms of soil depth categories. AEZ 211111, which has only a slight
slope constraint, undergoes the highest reduction of 9.3%. Other sig-
nificant reductions are 3.7% for AEZ 112122, 3.3% for AEZ 321111 and

Table 4. From the top: monthly mean precipitation (mm) calculated from available rainfall data acquired by six ARPAV meteorological
stations located in the selected territory; two rainfall scenarios imposing increasing dryness conditions in the summer periods, extreme-
ly rainy winters and decreasing total annual precipitation; (on the right side) R factor related scenarios calculated with Arnoldus’s
(1980) method.

Monthly mean precipitation between 1994 and 2012
Weather station of Crespadoro
Mar Apr May Jun Jul Aug Sep Oct Nov Dec

162.86 15391 11659 98.21 116.99 14846 164.51 240.52 141.14

Jan Feb

Monthly mean precipitation ~ 85.78 7548  97.73
between 1994 and 2012
in mountain areas

Total
1602.17

Weather stations of Dolce, Grezzana, Illasi, Marano di Valpolicella and San Pietro in Cariano

Jan Feb Mar Apr May

Monthly mean precipitation ~ 46.84 3740 4731 7861  87.67
between 1994 and 2012
in plain and hill areas

Jun Jul Aug Sep Oct Nov Dec
85.95 81.78 85.86 9585 92.69 109.88 74.23

Total
924.07

Rainfall scenarios Calculated R
Hypothesis 1

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Hypothesis 1 of rainfall 10293 6039  58.64 8143 7695 3498 2946 2340 118.77 246.76 40888 211.71
change in mountain areas 1.2 0.8 0.6 0.5 0.5 03 03 02 0.8 15 1.7 15

Hypothesis 2
Apr May Jun Jul Aug Sep Oct Nov Dec

Total

145429 765.18

Jan Feb Mar

Total

Hypothesis 1 of rainfall 5620 2992 2838 3931 4383 2578 2453 1717  76.68 139.04 186.80 111.35 779.00  289.04
change in plain and hill areas 1.2 0.8 0.6 0.5 0.5 03 03 02 0.8 15 1.7 15
Hypothesis 2
Jan Feb Mar  Apr May Jun Jul Aug Sep Oct Nov Dec Total
Hypothesis 2 of rainfall 10293 4529 39.09 6515 4617 3498 19.64 11.70 103.92 296.11 505.08 268.16 1538.23  1061.94
change in mountain areas 1.2 0.6 04 04 0.3 03 02 0.1 0.7 1.8 2.1 1.9
Hypothesis 2
Jan Feb Mar  Apr May Jun Jul Aug Sep Oct Nov Dec Total
Hypothesis 2 of rainfall 5620 2244 1892 3144 2630 2578 1636 859 - 67.09 166.84 230.75 141.04 81177 42429

change in plain and hill areas 1.2 0.6 0.4 04 0.3 03 02 01 0.7 1.8 2.1 1.9

Table 5. Overall soil loss after 100 years, resulting from different rainfall scenarios in the virtual territory.

Erosion scenarios Million tons of eroded soil

Percentage increase

Current rainfall (R values: mountain area =668.2; plain and hill =287.1) 82.79 -
Rainfall hypothesis 1 (R values: mountain area =765.2; plain and hill =289) 90.26 +9.02%
Rainfall hypothesis 2 (R values: mountain area =1061.9; plain and hill =424.3) 127.92 +54.50%
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3.0% for AEZ 321211. Simulations for hypothesis 1 rainfall showed an
increase of 30.44% of the extent of total eroded soils and of 9.02% of the
overall amount of tons of eroded soils. In the second hypothesis of rain-
fall change these increments are respectively 182.61% and 54.50%.
Compared to the first simulation, the two scenarios demonstrate how
climate evolution hypothesised by the IPCC could increase erosion phe-
nomena, even with reduced annual precipitation.

Discussion and conclusions

Global change studies are research fields that involve multi-discipli-
nary knowledge and require continuous development of new tools and
technologies, to enable us to improve our ability to monitor these phe-
nomena throughout time and explore them in future projections. In
this context, we explored the possibility of developing virtual territo-
ries, with the aim of statistically replicating the morphological, ecolog-
ical and land cover features of real environments, on which to test and
experiment land use change and climate change phenomena.

The first step in building a virtual territory is the generation of a geo-
morphological surface statistically similar to a selected existing territo-
ry whose features the scientist wants to reproduce. We adopted the
solution of procedural fractal surface generation because natural geo-
morphological shapes exhibit fractal morphologies with statistical self-
similarity. The limit of this method is that it is not able to reproduce
non-fractal morphologies resulting from a series of separated and
uncorrelated events.

The virtual DEM we obtained with the highest fractal dimension of
2.59 shows a Pearson’s correlation coefficient of 0.79 between the
power spectrum maps of virtual and existing DEMs, which we consid-
ered as a satisfactory correlation. At the moment, the procedure con-
sists in a manual repetition of trial-and-error approach to generate vir-
tual DEMs on the basis of fractal parameters calculated on the existing
territory, followed by statistical tests of goodness of fit. A more efficient
approach would consist in the development of an optimisation proce-
dure based upon automatic sequential generation of DEMs and statis-
tical tests, with defined ranges of fractal parameters.

The approach described above used the RUSLE model as an example
to demonstrate how to develop virtual landscapes meeting the spatial
variability of the various physical variables and with internal consisten-
cy between them, i.e., the between the values stored in the package of
GIS layers (soil characteristics, slope, land cover, efc.).

The adoption of AEZs as a means to refer the characteristics of the
territories to land suitability and, in case, later on also to its productiv-
ity, appeared as a crucial element to provide a meaningful and concise
representation of the landscapes, to maintain and assess their realism
and to monitor possible changes of agro-ecosystem features over long
time frames.

For this study, GIS software showed to be an indispensable tool for
the generation and the development of the informational component of
virtual territories, even though we could not find all the required pro-
cedures within the same package. The development of automated mul-
tifractal DEM generation tools as GIS plug-in appears as a stimulating
perspective for future research efforts in this field.

Climate change studies are affected by a variety of uncertainty fac-
tors. Many attempts have been performed to simulate the behaviour of
global socio-ecosystems under global change, but quite often, the ambi-
tion to consider all the exogenous drivers and the endogenous dynam-
ics ends up with a substantial loss of control of simulation conditions.
An approach based upon virtual territories has opposite pros and cons:
it loses indeed the immediate reference to existing territories, but at
the same time it allows a much stronger control of the territorial vari-
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ables and thus it facilitates the exploration of causal chains in systems’
behaviour and thus the analysis of what-it scenarios in controlled envi-
ronments.

Indeed, the package of GIS layers which constitute a virtual land-
scape are the result of a series of approximations applied with the aim
of reproducing dominant features of an existing territory, but we
believe that the proposed approach showed a good potential to comple-
ment studies conducted on existing territories. We may in particular
imagine the identification of areas of greatest interest at global level,
upon which one could develop virtual spatially explicit laboratories to
run long-term controlled simulation experiments with varying combi-

Legend

Soil depth (cm)
o

Il <=50

"1 >50and <= 100
I >100 and <=150

Initial soil depth map

Soil depth after 50 years

Soil depth after 100 years

Figure 5. Simulation performed by applying the revised universal
soil loss equation model on the virtual territory. From the top: the
initial soil depth map; the soil depth map after 50 years; the soil
depth map after 100 years.
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nations of environmental (e.g., climatic), socio-economic, and policy
scenarios, and their results could significantly consolidate and improve
global scale simulations run by existing integrated assessment models.
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