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Abstract 

This work describes the results obtained by the statistical downscal-
ing technique for the assessment of changes in precipitation (P),
potential evaporation (PE). In turn P and PE are used for computing
two indexes of water availability, namely the index of water deficit
(WDI) and the aridity index (AI). The analysis is carried out for the
Capitanata plain (South-East of Italy) and the A2 scenario of the IPCC
Assessment Report 4 (AR4). The large-scale temperature at the
1000hPa level and sea level pressure fields are used as predictors. The
local precipitation and potential evaporation time series are used as
predictands. The statistical downscaling technique used is based on
Canonical Correlation Analysis. A validation procedure of the model is
performed and  the same technique is used for climatic projections of
P, PE and consequently WDI and AI. Climate analysis and projections at
this local space scale is an important issue not only for current water
management and planning, but also for improving the irrigation effi-
ciency considering future climate change scenarios.

Introduction

The potential evaporation (PE) was recently demonstrated to be the
right variable for taking into account the atmospheric evaporation
demand in a given site (Katerji and Rana, 2011). It was defined
(Penman, 1948; Monteith, 1965; Katerji and Rana, 2011) as the evapo-
ration from a surface saturated in water (free water at the surface, or
water under dew form above the crop leaves). Afterwards, the potential
evapotranspiration concept (PET) was introduced to take into account
the biological control (stomatal closure) and the control exerted by the
vegetation structure (architecture) on the natural surfaces water loss-
es. The PE is only a theoretical variable because it does not occur in
natural conditions, except in the very improbable case in which the
plant leaves represent a very thin layer at the top of the stem. However,
it assumes a strong fundamental role when it is necessary to study the
water requirements of crops at seasonal scale, mainly in the frame-
work of climate change. In fact, the difference between PE and precip-
itation (P) at monthly-seasonal scale, here called water deficit index
(WDI), can be used to design irrigation systems at regional scale (e.g.
Davis, 1970) and to develop soil water balance models (Deardoff, 1977;
Zhang et al., 1999). Furthermore, WDI well depict the evolution of a cli-
mate with respect to water resources at regional scale (Gao and Giorgi,
2008). More often, potential evaporation and precipitation, both calcu-
lated at annual time scale, are used to determine the aridity index (AI)
as ratio between P and PE (Budyko, 1974; UNEP, 1992). This last index
was for a long time used to evaluate the water balance at regional scale
(e.g. Oldekop, 1911) and more recently it is also adopted by the
UNCCD (UN, 1994) to define arid, semiarid and dry sub-humid areas
(e.g. Tsakiri and Vangelis, 2005). Thus, the AI evolution in time gives
information about the trend of aridity risk under climate change
dynamics.

In the recent past the effect of higher air temperature, change in
precipitation patterns and CO2 air concentration increase on the bios-
phere due to climate change were studied mainly at the large spatial
scale of General Circulation Model (GCM). Thus, inevitably, only gen-
eral conclusions can be drawn about the water budget in agricultural
and forest systems (Neilson, 1995; Gerten et al., 2004). Therefore,
although the spatial resolution of the GCM is continuously being
increased, downscaling procedure of atmospheric information from
the large scale to regional and local scales is still needed. Furthermore,
the water deficit plays a crucial role when crops grow in semi-arid
Mediterranean climatic areas: in such environments, the heterogene-
ity of the lands and of the cultivated crops imposes an accurate analy-
sis at local space scale (Budyko, 1974).

In general, the techniques used to connect atmospheric informa-
tion/variables from large to local scale (which are more useful to study
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biophysical processes) are the dynamical and statistical downscaling.
In the first approach a regional scale climatic model is run under the
boundary condition given by the GCM. Thus a simulation of the mete-
orological variables is obtained on the scale of the grid of the regional
model and it can be as low as few tens of kilometres. Statistical down-
scaling, instead, is based on the set up of a statistical model, connect-
ing large and small scale variables. This model is made up using long
historical records and then used on the projection of large scale vari-
ables given by GCM to obtain values of small scale variables. Even if sta-
tistical downscaling is not directly based on the physical mechanism
governing the climate dynamics, it can be a valid alternative to dynam-
ical downscaling for two main reasons. First of all, the numerical effort
to perform statistical downscaling is very low and practically every per-
sonal computer has enough computational power to perform a good
analysis. Secondly, statistical downscaling can, in principle, describe
also very small scale dynamical features, with the condition that they
persist along the whole historical records used to calibrate the statisti-
cal model, as it happens for orographic and land use effect on climate.

In this paper we follow a partially new approach assessing the statis-
tical downscaling method for P and PE and, then, we calculated  WDI
and AI, with an outline about the expected future projections. The
Capitanata plain was selected as the study area because of its impor-
tance in the Italian agriculture context and its representativeness of
the Mediterranean environmental condition. The plain is located in the
South-East of Italy. This area is characterized by a land use mainly
based on agriculture activity and specifically for the cultivation of
durum wheat, tomato, sugar beet and vineyard. According to climatic
classification, the plain results under Mediterranean semi-arid climate
(Aguado et al., 2010). 

Materials and methods

Statistical downscaling involves developing quantitative relationships
between large-scale atmospheric variables (predictors) and local surface
variables (predictands). Predictor sets are typically sea level pressure,
geo-potential height, wind field, absolute or relative humidity and tem-
perature fields. These variables are archived at the grid resolution of
global climate models. In statistical downscaling most work has focused
on precipitation because it is the most important input variable for many
natural systems models (Wilby et al., 2004). Once the relationships
between predictors and predictands have been established, then the sta-
tistical downscaling based on the climatic projection (scenario) from
Global Climate Model (GCM) can be use for producing climatic projec-
tions of the local variables. In this work sea level pressure (SLP) and tem-
perature at 1000 hPa (T) were used as predictors. The SLP series was
extracted from the EMULATE dataset (Ansell et al., 2006) and it is based
on daily averaged sea level pressure values from January 1850 to
December 2003. The data cover the region from 70W-70N (top left cor-
ner) to 50E-25N (bottom right corner). The grid is 5¥5 in latitude and
longitude. Thus at each time step the dataset is made up of 250 values of
SLP. Regarding T, daily re-analysis data were downloaded from the NCEP
Reanalysis data (Data provided by the NOAA-ESRL Physical Sciences
Division, Boulder Colorado from their Web site at http://www.esrl.noaa.
gov/psd). These data cover the EuroAsiatic region from 0N to 90N of lat-
itude and from 90W to 90E of longitude. The grid is 73¥37 with a spatial
scale of 2.5¥2.5 degrees. Data cover the period from 1948 to 2007.
Concerning predictands, the monthly precipitation (P) and potential
evaporation (PE) time series were used. P time series collected by the
Italian National Hydrographical Service were used to calibrate the statis-
tical model: the analyses were based on six climate time series from sta-
tions located in the Capitanata plain and covering the period from 1935
to 2006. PE can be thought as the evaporation from a free water at the

surface, or 100% of humidity at a natural surface. Actually, the surfaces
corresponding to the PE definition are the large surfaces of water (lakes,
seas, oceans) or very moisten soils. The values of PE (mm/day) can be
calculated by the Penman model (Penman, 1948):

(1)

where λ is the latent heat of vaporisation for water (2.46 MJ/kg), Δ is
the slope of the saturation vapour pressure function vs. temperature
(Pa/°C), γ is the psychrometric constant (Pa/°C), ρ is the density of the
air (kg/m3), cp is the specific heat at constant pressure (J/kg°C), A is
the available energy (W/m2) calculated as difference between net radi-
ation and surface heat flux and ra is the aerodynamic resistance (s/m).
The aerodynamic resistance ra is the only resistance term in PE: it
describes the effect of obstacles encountered by the water vapour pass-
ing from the evaporative surface to the reference height z. This resist-
ance, which depends on the surface roughness (z0) and crop height
(hc), is given  by the following relation (Perrier, 1975a,b,c,):

(2)

where d is the zero plane displacement height (m), k the von Kármán con-
stant and u is the wind speed (m/s). The daily time series involved in the
computation of the PE were from the agro-meteorological measurements
(maximum and minimum temperature, humidity, global radiation and
wind speed) collected at the site of Podere 124, an experimental farm of
the CRA-SCA located near to Foggia in South Italy (41°26'49'' N,
15°30'15'' E, 90m a.s.l.). The time series cover the period from 1951 up to
2006. In order to compute the statistical downscaling on a monthly time
scale, averaged values were calculated and taken into account in further
analyses. We retrieve from the IPCC-Data server (available at
http://www.mad.zmaw.de/em/IPCC_DDC/html/ddc_ gcmdata.html) the
SLP and T at 1000 hPa projections relative to the A2 scenario and the
Control Run (CTR) of the Assessment Report 4 (AR4) for the GCM
ECHAM5/MPI GCM run (Roeckner, 2005). The A2 scenario covers the
years from 2010 to 2100, while the CTR regards the period 1961-1990 and
is obtained with the atmospheric greenhouse gas concentration observed
in the same period. Monthly data are on a grid with 192¥96 points with a
resolution of about 1.875 degrees. GCM projections have been interpolat-
ed on the same grid of the predictor data in order to project them on the
canonical patterns obtained from the statistical model. The climate
change signal is computed as the difference between the A2 and the CTR
downscaled values. The agreement between CTR and observed data is a
measure of the correspondence between real climate observed in the past
and the climate described by the GCM. In this work we used a statistical
technique called Canonical Correlation Analysis (CCA). This procedure is
well known and we do not describe it here. The interested reader can find
very nice reviews of this topic on (von Storch et al., 1993) or on (von
Storch and Zwiers, 1999; Zorita and von Storch; 1999). The technical
details of the implementation can be found in Palatella et al. (2010). In
order to evaluate the reliability of the statistical downscaling procedure
the following strategy was adopted. The predictor and predictand climate
variables were splitted into two sub-periods, the first was considered as
the training/calibration period and the second as the validation/prediction
one. The comparison between the observed predictand (i.e. the sub-peri-
od not used in the calibration of the model) and downscaled series corre-
sponding to the validation/prediction period provides an evaluation of
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accuracy  of the statistical downscaling procedure. Several quantities can
be used to assess the agreement between  the CCA model results and
observations. We use two approaches. One approach is based on perform-
ing the Pearson's correlation analysis between the spatial average of the
observed and downscaled predictand defined as

(3)

where yt,j and ỹt,j are the values of the observed and computed predictand
series at time t at station j, respectively, m is the number of observations
(stations) for each time step, N is the number of time steps. Barred vari-
ables refer to spatial- and time-averaged quantities. We propose another
measurement of the model performance evaluating the mean percentage
error of the prediction defined as

(4a)

where

and 

Notice that σ2 is referred to as the mean squared error as discussed in
(von Storch and Zwiers, 1999, p. 396). This approach can be considered
as suitable for strongly not-Gaussian asymmetrically distributed variables,
like precipitation. However, for variables having approximately Gaussian
distribution, the mean percentage error can be normalized dividing σ by
the standard deviation (SD) values, i.e.

(4b)

For PE we also use this approach. Other applications (i.a. Palatella et al.,
2010 and reference therein) suggest that the results of this downscaling
approach  are reasonably accurate at time scale of 5 and 10-years. The WDI
was obtained by subtracting the downscaled values of P from that of PE

WDI = PE – P    (5a)

instead, the AI was estimated by dividing downscaled values of P from that
of PE

AI = P/PE    (5b)

Regarding the AI, usually values of AI≥1, 0.65≤AI<1, 0.5≤AI<0.65,
0.20≤AI<0.50, 0.05≤AI<0.20, AI<0.05 identify humid, dry sub-humid, dry
land, semi-arid, arid and hyper-arid regimes, respectively (e.g. Gao and
Giorgi, 2008).

Results and discussion

In this section we present the results of the CCA analysis, by dis-
cussing the best choice for the predictors for P and PE, then analysing
the resulting patterns of P, PE, WDI and AI for the A2 scenario.

In the downscaling procedure for P the training/calibration period
was fixed to 38 years and the validation/prediction period to the last 14
years. Concerning PE, instead, the training/calibration period was fixed
to 36 years, while the validation/prediction to the last 20 years. The
downscaling procedure for P based on monthly frequencies did not pro-
duce good results (data not shown). The short length of the climate
time series and its large variability related to the geographical area
(Castrignanò et al., 2010; Vitale et al., 2010) may likely be the cause. In
order to improve the  downscaling results, we computed the winter
(December, January, February; DJF), the spring (March, April, May;
MAM), the summer (June, July, August; JJA) and the autumn
(September, October, November SON); seasonal values. In this way the
training/calibration series has 114 points (38 years x 3) while the vali-
dation/prediction series has 42 points (14 years x 3). We carried out the
analysis, seasonally aggregating  monthly values (for example, a time
series looks like 1960 March, 1960 April, 1960 May, 1961 March, …).

We found that the best predictor for the predictand P is SLP. This result
is in agreement with the results by von Storch et al. (1993) and von Storch
and Zwiers (1999). Some authors (see for example Hertig and Jacobeit,
2008) found good agreement using other predictors (i.e. geopotential
height; but we think that SLP is the best one in the present case, due to
the fact that no longer time series of other predictors are available for this
region. Furthermore, regarding P, the mean percentage error (eP)
assumes higher values, especially during summer season when the per-
cent error reaches the 73% (Table 1). This is not surprising considering
that the precipitation phenomena in Mediterranean region, particularly
during summer, are less correlated to large scale circulation; indeed dur-
ing summer, precipitation is largely due to small scale convective systems
(Saaroni and Ziv, 2000). However, referring to the Pearson's coefficients,
it would seem to be a good fit.  On the other hands, other studies (e.g.
Palatella et al.,  2010; Lionello et al.,  2003; Zorita and von Storch, 1999)
showed that  this method can be acceptably applied to the analysis of cli-
mate change signal. Concerning PE predictand the best predictor result-
ed to be T at 1000 hPa. The mean percentage error between observed and
predicted annual values are around 16%, with lower values during spring
and summer and higher values during autumn and winter months with a
peak of 31% in December (Table 2). Regarding the ePE error indicator, we
observe that the downscaling procedure error is lower than standard devi-
ation only in January, March, April and August. These results are not so
good but we should remember that the average value of the predictand in
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Table 2. Mean percentage error (eP and ePE) and Pearson's coefficient (r) calculated in the validation/prediction period for monthly
potential evaporation (PE) series. Values of r in italics are statistically significant at 95% of confidence level.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

eP 15.7 17.1 16.0 12.7 11.9 10.7 12.7 10.2 16.2 16.5 21.8 30.8
ePE 114.6 72.4 89.9 83.6 111.1 106.9 115.3 88.0 108.5 146.1 135.4 121.3
r 0.22 0.62 0.48 0.42 0.24 0.28 0.11 0.50 0.24 0.04 0.18 0.04

Table 1. Mean percentage error (eP) and Pearson's coefficient (r)
calculated in the validation/prediction period for precipitation
(P) time series. Values of r in italics are statistically significant at
95% of confidence level.

DJF MAM JJA SON

eP 53.3 59.4 73.5 51.3
r 0.56 0.41 0.51 0.51
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the validation series is in general different from that obtained in the
training series. For this reason both error indicators, eP and ePE should be
observed to evaluate the reliability of the technique used. Summarizing,
the main issue from the above analysis is that the proposed statistical
downscaling has some skills in forecasting the PE, in particular during
the spring-summer period, when the crops are usually cultivated and irri-
gated.

In Figures 1 and 2, we compare the seasonal and annual climatic pro-
jections for WDI and AI respectively, together with the observed and

CTR data. It is worth noticing that the agreement found between CTR
and observed data can be seen as a measure of the correspondence
between the observed and the described climate by the GCM. In order
to statistically evaluate the difference between A2 climatic projection
and CTR data we divide A2 projection time series in three thirty years
long sub-periods: 2011-2040 (I), 2041-2070 (II) and 2071-2100 (III).
Then we perform the non-parametric Mann-Whitney test between the
CTR data and the projections related to each three sub-periods. In Table
3 the related results for P, PE, WDI and AI are given. The sign (+ or -)
of the test statistics indicates the direction (increase or decrease) of
the change. 

Concerning PE, the CTR series over-estimates the observed data dur-
ing winter and spring while under-estimates it during summer (data
not shown here). About trends, the Mann-Whitney statistics denote a
significant statistical increasing trends during winter and summer rel-
atively to the periods II and III. In these cases, the causes are likely to
be attributed to rising in air temperature and to heat waves, particular-
ly during the summer months (Vitale et al., 2010). Moreover a good
agreement between CTR and observed data of the variable P can be
observed (data not shown here). The negative sign of test statistics
(Table 3) seems to indicate a weak decrease in the level of rainfall even
if the only significant value is related to the period II. In opposite, a sig-
nificant increasing trend is predicted for the summer season of periods
II and III.

About WDI, the CTR series reproduced reasonably well the observed
series, for all seasons (Figure 1). Also in this case, as for PE, GCM data
over-estimate the real values during winter and under-estimate it dur-
ing summer. The Mann-Whitney statistics indicates a relevant increase
during winter (it is significant in periods II and III), and summer sea-
son even if it becomes significant only in period III. The AI was calcu-

Article

Figure 1. Predicted evolution of water deficit index (WDI) for different seasons. For comparison figures show the observed values and
CTR results.

Figure 2. Predicted evolution of aridity index (AI) for the differ-
ent seasons. For comparison figures show the observed values and
the Control Run (CTR) results.

Non
-co

mmerc
ial

 us
e o

nly



lated for the whole year and we observe a non-significant increase in
the first period, while in the second period a still non-significant
decrease (corresponding to an augmented need of water) is observed.
Finally, in the last period a significant decrease of 3.60 % is obtained.
In average, the climate results to be dry before 2000 decreasing up to
semi-arid in the last part of the present century.

In addition, in order to determine the magnitude of change, the eval-
uation of the slope coefficient of a linear function of time was estimat-
ed by least squares method. This approach should not be considered as
the best way to model the series, but as the simplest and easiest way to
interpret the resulting trends.

Concerning the climate projections of WDI at seasonal scale, i) it
should increase of about 60 mm/season per century during DJF. This
value is distributed in an equitable manner (about 20 mm/month per
century) for each of three months; ii) Results regarding MAM and SON
are quite constant and no trends is noticeable; iii) An increase of about
60 mm/season is apparent during JJA with a predominant and increas-
ing trend in August (about 40 mm per century). This result is likely
based on one hand to the summer heat waves provided by GCM that
affect PE, while on the other to the limit of statistical downscaling to
well estimate sudden and intense local rainfall characterized this area
during the last decade of August. Concerning the yearly projection of
AI; iv) it decreases significantly only in the III period, by showing any-
way a constant slowly decrease from the next years until 2100; v)
Furthermore, it goes from a mean value of 0.5 (dry land) for the last 20
years to a mean value of 0.3-0.25 (semi-arid to arid) in the period 2040-
2100, being semi-arid for the next thirty years.

Conclusions

This study shows a procedure for  producing downscaled climatic
projections of precipitation , potential evaporation and related water
deficit and aridity indexes, starting from the temperature at 1000 hPa
(T) and sea level pressure (SLP) of GCM simulations. The downscaling
was carried out for the A2 AR4 IPCC emissions scenario.

This study confirms that statistical downscaling techniques are use-
ful tools for the forecast of  single agro-climatic variables as P and PE,

providing that the training/calibration period is long enough to well
describe the phenomenon complexity. These considerations allow to
interpret and take into consideration the climatic projections of WDI
and AI, variables useful for irrigation system design and management
of lands in the framework of climate change.

From an agronomical point of view, these projections offer more
information than those based only on temperature and precipitation,
because they help to determine the temporal evolution of the real water
requirements in agriculture. This is particularly important when the
seasonal precipitation is not sufficient to meet the transpirative plant
demand. In particular, the increase in WDI of about 60 mm/season per
century, during winter and summer seasons, must to be taken into
account in water management. For example, for winter wheat cultivat-
ed in Mediterranean areas, it could be increase the probability to irri-
gate during the winter period. This is also due to the typical advance of
phenological phases caused by the expected temperature increase. The
increase of WDI during the winter period could have a negative impact
also for the spring crops due to the low soil water content at sowing
time. However, the increase of WDI in summer and in particular in
August, could have a lower impact on  irrigation management of herba-
ceous crops, because few species need to be irrigated in the final part
of their cycle.

The AI was calculated for the whole year, then it does not show a sim-
ilar relevant change. Consequently it is not so immediate to achieve an
agronomical impact of its changes, but surely it gives an idea about the
possibility of aridity risk following climate change. This fact could be
useful to eventually address future changing of land purposes and crop
species to be cultivated, both at agricultural and forest level (Le
Houérou, 1996; Gao and Giorgi, 2008; Seneviratne et al., 2006)

Our results confirm and support the need to adopt strategies of adap-
tation for the agricultural activities in order  to cope with the expected
increase of WDI and the decrease of AI, as to optimize the choice of
crops/varieties, irrigation method, soil fertilization and soil tillage. To
properly face the consequences of climate change in arid and semi-arid
regions all these considerations should be conduct in a integrated way.
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