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Abstract 

Salinization is one of the most serious problems confronting sus-
tainable agriculture in semi-arid and arid regions. Accurate mapping
of soil salinization and the associated risk represent a fundamental
step in planning agricultural and remediation activities. Geostatistical
analysis is very useful for soil quality assessment because it makes it
possible to determine the spatial relationships between selected vari-
ables and to produce synthetic maps of spatial variation. The main
objective of this paper was to map the soil salinization risk in the
Delia-Nivolelli alluvial basin (south-western Sicily, southern Italy),
using multivariate geostatistical techniques and a set of topographical,
physical and soil hydraulic properties. Elevation data were collected
from existing topographic maps and analysed preliminarily to improve
the estimate precision of sparsely sampled primary variables. For
interpolation multi-collocated cokriging was applied to the dataset,
including textural and hydraulic properties and electrical conductivity
measurements carried out on 128 collected soil samples, using eleva-
tion data as auxiliary variable. Spatial dependence among elevation

and physical soil properties was explored with factorial kriging analy-
sis (FKA) that could isolate and display the sources of variation acting
at different spatial scales. FKA isolated significant regionalised factors
which give a concise description of the complex soil physical variabil-
ity at the different selected spatial scales. These factors mapped,
allowed the delineation of zones at different salinisation risk to be
managed separately to control and prevent salinization risk. The pro-
posed methodology could be a valid support for land use and soil reme-
diation planning at regional scale.

Introduction

High salt content in topsoil represents a serious threat for agricul-
tural productions because it may limit the plant growth and cause a
continuous degradation of soil quality and fertility. There are many
possible, both natural and anthropogenic causes, of soil salinization.
This is generally related to arid and semiarid climatic conditions and
actually is one of the main causes of desertification in many places of
the world (Tòth et al., 2008). In Italy desertification risk is more wide-
ly recorded in the southern regions, such as Apulia, Calabria,
Basilicata and Sicily, where leaching of salt is reduced by low rainfall
(Ministry for the Environment, Land and Sea, 2007).

In these regions accurate assessment of soil salinization and its
variability represents an important issue which should be taken into
account in planning agricultural activities to increase crop yield.
Several variables were used by different authors to predict soil salini-
ty, such as electrical conductivity of the saturated soil paste extract
ECe, exchangeable sodium percentage, pH, and total clay+fine silt con-
tent (Rhoades et al. 1999; Pozdnyakova and Zhang 1999; Corwin and
Lesch 2003; Douaik et al., 2004). This prediction is quite important
because excessive amounts of salts may adversely influence biological,
physical and chemical properties of soil (Lauchli and Epstein, 1990).

Advanced geostatistical analyses are often used in this research field
to characterize soil salinization and determine its causes adequately.
Geostatistics offers a collection of statistical and probabilistic tools
aimed at understanding and modeling spatial variability and allows to
utilize secondary information, that is often available at finer spatial res-
olution than the sampled values of a primary target variable to increase
spatial resolution and improve estimation precision. The estimation of
soil salinization risk actually requires to model all the environmental
components controlling the process and to analyze their variability at
different spatial scales (Castrignanò et al., 2009). At least two processes
can cause salinization: the first, operating at large scale, naturally
occurs where high levels of soluble salts are stored in the soil and

Correspondence: Annamaria Castrignanò, Consiglio per la Ricerca e la sper-
imentazione in Agricoltura - Unità di ricerca per i Sistemi Colturali degli
Ambienti caldo-aridi (CRA-SCA), via Celso Ulpiani 5, 70125 Bari, Italy.
E-mail: annamaria.castrignano@entecra.it

Key words: salinization risk, soil retention curve, geostatistics, factor
Kriging, intrinsic random functions.

Acknowledgements: this research was funded by CLIMESCO Evolution of
cropping systems as affected by climate change project, contract n. 285,
20/02/2006 (Ministry for Education, University and Research).

Received for publication: 1 April 2011.
Accepted for publication: 6 December 2011.

©Copyright D. Sollitto et al., 2012
Licensee PAGEPress srl, Italy
Italian Journal of Agronomy 2012; 7:e4
doi:10.4081/ija.2012.e4

This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License (by-nc 3.0) which permits any noncom-
mercial use, distribution, and reproduction in any medium, provided the orig-
inal author(s) and source are credited.

Spatial data fusion and analysis for soil characterization: 
a case study in a coastal basin of south-western Sicily (southern Italy)
Donato Sollitto,1 Daniela De Benedetto,1 Annamaria Castrignanò,1 Giuseppina Crescimanno,2
Giuseppe Provenzano,2 Domenico Ventrella1

1Consiglio per la Ricerca e la sperimentazione in Agricoltura - Unità di ricerca per i Sistemi
Colturali degli Ambienti caldo-aridi (CRA-SCA), Bari; 2Dipartimento dei Sistemi Agro-Ambientali,
Università di Palermo, Italy

Italian Journal of Agronomy 2012; volume 7:e22

Non
-co

mmerc
ial

 us
e o

nly



[page 20] [Italian Journal of Agronomy 2012; 7:e4]

ground water. In such cases, the accumulations of salts have originated
from landscape processes or sea water intrusion into fractured rock of
the aquifer. The second process causing salinization can result from
human activities, at short range, such as the excessive use of brackish
water in agriculture (Castrignanò et al., 2008). Therefore, since some
factors affecting soil salinization are likely to have a short range of influ-
ence, whereas others act over longer ranges, soil variables are expected
to be correlated in a scale-dependent way. The estimation of their scale-
dependent correlation structure then becomes crucial in salinization risk
investigations (Sollitto et al., 2010).

The objective of this paper was to delineate areas with different
degree of salinization risk in the Delia-Nivolelli sedimentary basin
(south-western Sicily, southern Italy) through a multivariate geostatis-
tical approach.

Material and methods

The study area
The Delia-Nivolelli sedimentary basin covers an area of about 6000 ha

in Trapani province, between Mazara del Vallo and Castelvetrano (south-
eastern Sicily, Italy). The basin is characterized by an alluvial plain bor-
dered by hilly landscapes shaped on clayey, sandy and evaporitic rocks
(Figure 1). The most widely outcropping lithology is represented by
Holocene alluvial deposits of Delia river. In the northern and south-east-
ern boundaries of the alluvial plain, marly and sandy clay outcrops on a
hilly belt, referred to Cozzo Terravecchia formation (Miocene). Outside
the basin this continental sedimentary formation is covered by a consid-
erable thickness of evaporitic rocks of the Chalky Solphurous sequence
formation. Pliocene terraced marine sandstones extend in the western
side of the Delia floodplain and on the surrounding flat hills. The main
morphological elements of the area are the Delia river and the other trib-
utary streams coming from the hilly belts. According to the USDA soil
classification (USDA, 1999), only four subgroups of soil can be found in
the Delia-Nivolelli catchment: Lithic Xerorthens, Typic Chromoxerert,
Vertic Xerichrept and Vertic Xerofluvent.

Agricultural land use is widespread in the study area and grapevine
is the main crop covering about 83% of the whole agricultural area,
which represents 93% of the whole study area.

At present, one of the most important problems in the study area is
the considerable increase of soil salinization due to high salinity of
irrigation water. Both irrigation water from groundwater and surface
water coming from the dam are saline water. The irrigation in farm is
generally practised with sprinkler or drip systems using the water
stored in the dam built upstream of the Delia river, in which the salts
coming from the weathering of evaporitic rocks are dissolved. For this
reason one of the most important problems in the area is the consider-
able increase in soil salinization caused by high salinity of the irriga-
tion water. 

Soil sampling
In order to assess soil salinization, a soil survey was carried out

within the frame of a European project aimed at preventing saliniza-
tion and desertification (Crescimanno, 1998). Topsoil samples were
randomly collected at 128 locations and soil moisture (m3 m-3), electri-
cal conductivity of saturated extract (dS m-1) and grain size distribu-
tion (kg kg-1) were measured. The laboratory measurements were car-
ried out according to the methods of soil analysis of American Societies
of Agronomy (ASA) and Soil Science (SSSA) (ASA-SSSA, 1986). 

To determine the soil retention curves, hanging water column appa-
ratus (Burke et al., 1996) was used to evaluate soil water content, θ,
corresponding to soil water potential (h) values ranging from -0.05 to -

1.0 m on undisturbed soil samples of 0.08-m diameter and 0.05-m
height; pressure plate apparatus (Dane and Hopmans, 2002) was used
to measure soil water content corresponding to the h values of -3.37 m,
-10.2 m, -30.6 m, and -153.0 m, on sieved soil samples of 0.05-m diam-
eter and 0.01-m height. 

Saturated hydraulic conductivity, Ks, was determined by the constant
head permeameter method (Klute, 1986) on the same undisturbed soil
samples used to determine the retention curves. 

A digital model of the soil at high resolution was produced by the dig-
itization of existing points of known elevation from regional technical
maps. Firstly, 2364 elavation were drawn from a technical map on a
1:5000 scale; secondly, to obtain a more even distribution of points, fur-
ther 1227 points were chosen on a map on a 1:10000 scale. The exhaus-
tive elevation dataset included 3591 points and was split into a calcula-
tion set and a validation set: the first one (2635 points) was used for
interpolation, whereas the second (668 points) for validation (Figure 2).

Multivariate geostatistical analysis

Intrinsic random functions of order k (IRF-k) 
The elevation data showed a spatial trend (unbounded variogram), so

that they were interpolated by using a non stationary linear geostatisti-
cal technique, called intrinsic random functions of order k (IRF-k) theo-
ry formulated by Matheron (1973). It is based on the decomposition of

Article

Figure 1. Digital elevation model of the Delia-Nivolelli sedimen-
tary basin (or study area).

Figure 2. Geolithological map of the study area.
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the total spatial variation into a drift component and a stochastic compo-
nent through the calculation of increments of a sufficiently high order
(k), so that the drift can be filtered out and stationarity attained (Chilès
and Delfiner, 1999; Buttafuoco and Castrignanò, 2005).

The value of some non-stationarity soil attribute Z at any location x,
expressed as a vector of the coordinates in two dimensional space, can
be written as the sum of two components:

Z(x) = m(x)+Y(x)    (1)

where m(x) is a slowly varying deterministic function, known as drift,
and Y(x) is a rapidly fluctuating spatially correlated random component
with zero mean. The basic hypothesis of kriging with drift is that the
expectation of the variable, known only at a small set of points in the
study area, can be written as the sum of a basis of L polynomials of the
coordinates (fl(x)) (internal drift):

(2)

where al are unknown coefficients.
The correlation structure associated with the random part (Y(x)) is

expressed by a generalized covariance (GC) function of the distance
between two observations xα and xβ, K(xα-xβ), denoted by K(h). A con-
venient model for the generalized covariance is the polynomial GC
model, namely a linear combination of a given set of generic basic
structures under conditions on the coefficients b:

K(|h|)=C0 δ(|h|)-b0|h|+bs|h|2log|h|+b1|h|3 (3)

where δ(|h|)=0 for |h|>0 else δ(|h|)=1. The coefficients C0, b0, bS and
b1, in a two dimensional space R2, must satisfy a set of inequalities for
K(h) being a valid generalized covariance of an IRF-k:

(Chilès and Delfiner, 1999).

In intrinsic random function kriging, the structural analysis is done
in two stages: firstly the order k of the drift is established and second-
ly the generalized covariance, K(h), is estimated by fitting a paramet-
ric model. To determine the degree of drift, the least-squares errors are
ranked in ascending magnitude for each target point and for each
option (order) of the drift. The order that produces the smallest rank,
averaged over the different target points, corresponds to the optimal
model for the drift.

To ensure mean and variance of kriging error exist, the following
condition must be satisfied:

(4)

where x0 is the estimated point and λβ are the kriging weights.
The constraint in estimate optimality leads to the traditional kriging

equations with the difference of using a generalised covariance func-
tion instead of a traditional covariance or variogram function.

The factorial CoKriging analysis 
The soil dataset was submitted to the multivariate geostatistical

technique called factorial CoKriging analysis (FCKA) and developed by
Matheron (1982) and exhaustively described in several papers
(Castrignanò et al., 2000; Wackernagel, 2003).

FCKA decomposes the set of original second-order random variables

⎨Zi(x); i =1,...,n⎬ into a set of reciprocally orthogonal factors
⎨Yv

u(x); v =1,...,n; u =1,…,NS⎬, defined for each of Ns spatial scales

(u) through the transformation coefficients :

The regionalized factors Yv
u are estimated through a modified cok-

riging system (Wakernagel, 2003) and then mapped, providing a dis-
play of the behaviour and relationships among the variables at the dif-
ferent spatial scales.

The applied procedure consists in three steps: i) modelling the co-
regionalization of a set of n variables, using the Linear Model of Co-
regionalization (LMC) and cokriging the individual variables; ii)
analysing the multivariate correlation structure by applying Principal
Component Analysis (PCA); iii) co-kriging and mapping specific factors
at each characteristic spatial scales.

Linear Model of Co-regionalization, developed by Journel and
Huijbregts (1978), considers all the studied variables as the result of
the same independent physical processes, acting at different spatial
scales u. The n(n+1)/2 simple and cross semivariograms of the n vari-
ables are modelled by a linear combination of NS semivariograms stan-
dardized to unit sill, gu(h), each one specific of the spatial scale u.
Using the matrix notation, LMC can be written as:

where G(h)=Ígij(h)Íis a symmetric matrix of order n¥n, whose diago-
nal and out-of-diagonal elements represent simple and cross semivari-
ograms, respectively, for the lag h; Bu= [bu 

ij](co-regionalization matrix)
is a symmetric positive semi-definite matrix of order n¥n, with real ele-
ments bu 

ij at the specific spatial scale u. The functions gu(h) are author-
ized semivariograms models and fitting LMC is performed by weighted
least-squares approximation under the constraint of positive semi-def-
initeness of the Bu, using the iterative procedures developed by
Lajaunie and Béhaxétéguy (1989).

To perform multivariate analysis on soil chemical properties and ele-
vation, since the soil sampling locations did not match the elevation
locations, the elevation was estimated at soil samples locations using
IRF-k kriging. A coregionalized dataset was then produced involving
the elevation estimates and soil data which were submitted to multi-
variate analysis. Multi-collocated cokriging is a way of integrating sec-
ondary (auxiliary) finer information in primary (target) variable mod-
elling, where the contribution of secondary variable to estimation
relies on the cross-correlation with the primary variable. 

This approach is quite similar to ordinary cokriging (Wackernagel,
2003) with the only difference in the neighbourhood search. Since
using all secondary information contained within the neighbourhood
may lead to an intractable solution due to too much information, the
secondary variable is used only at the target location and also at all the
locations where the primary variable is defined within the neighbour-
hood. This solution has generally produced reliable and stable results
(Rivoirard, 2001; Castrignanò et al., 2009). In contrast to other kriging
techniques, such as regression kriging and kriging with external drift,
in this approach the influence of secondary variable on primary vari-
able is explicitly taken into account through the estimation of the
direct secondary variable variogram and the cross-variogram. Since the
co-located secondary datum tends to screen the influence of more dis-
tant secondary data, there is actually little loss of information.

In this study case the topographic elevation grid, previously estimat-
ed, was used as secondary information for the multi-collocated cokrig-
ing of the soil variables (primary variable). Regionalized Principal
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Component Analysis decomposes each co-regionalization matrix Bu

into eigenvalues and eigenvector matrices (Wackernagel, 2003):

where Qu is the matrix of eigenvectors, i.e. the regionalised factors
Yv

u(x), and Λu is the diagonal matrix of eigenvalues for each spatial

scale u; is the matrix of order n¥n of the transformation
coefficients au 

iv. The transformation au 
iv coefficients in the matrix Au

correspond to the covariances between the original variables Zi(x) and
the regionalized factors Yv

u(x).

The Gaussian anamorphosis
Variogram modelling is sensitive to the presence of outliers when

data distribution is highly skewed. In such a case, it is better to normal-
ize and standardise data to mean 0 and variance 1 through Gaussian
Anamorphosis Modelling. 

A procedure known as Gaussian anamorphosis (Chilès and Delfiner,
1999) allows transforming each variable Z into a Gaussian-shaped vari-
able Y with zero mean and unit variance, through a mathematical func-
tion F : Z= F (Y). To transform the raw variable with any distribution
into a Gaussian one, it is necessary to invert the previous function as

Y = F-1 (Z)

Such function is estimated by fitting a polynomial expansion (Chilès
and Delfiner, 1999):

F (Y) = S Yi Hi (Y)

where Hi (Y) are the Hermite Polynomials and Yi are coefficients. In
practice, the polynomial expansion is restricted to a generally high order
(30-100) and is monotonically increasing within the interval defined by
the minimum and the maximum of the sample values (Wackernagel,
2003). The elevation data were interpolated with IRF-k kriging over a
5×5 m mesh grid by using the generalized covariance. The estimated
kriging values were back transformed to the raw values to produce the
map of elevation. The soil data were then interpolated at the nodes of the
same grid of DEM, by applying multi-collocated gaussian co-kriging
method, and the estimates were then back-transformed to the raw values
through the anamorphosis functions previously calculated.

Results and discussion

Digital elevation model
The elevation data range between the sea level (0 m) and 160 m asl,

with a mean value of 49.08 m. They are quite asymmetrically distrib-
uted toward the higher elevations (Figures 3 and 4), as also revealed by
the positive skeweness coefficient; therefore, they were transformed
through Gaussian anamorphosis procedure.

The variogram map (not shown) revealed higher continuity along
the N-40° direction, which corresponds to the main development direc-
tion of the Delia valley. After different trials, the trend component of
variation for the topographic elevation data was modelled by a linear
polynomial function of the geographical coordinates x and y and an
intercept, whereas the stochastic component was estimated by a first
order generalized covariance with a 1695.52 m range. The error statis-
tics in the validation test report a quite low mean value of -0.12 m but
the errors were widely varying between -47.61 m and 44.86 m, due to
the uneven topography of the study area.

The digital elevation model of the Delia-Nivolelli basin (Figure 1)
clearly shows the presence of a central sector characterized by a flat
morphology with elevation values ranging from about 10 m to 30 m asl,
decreasing from NE to SW, with an average topographic gradient of
about 0.26%. The lowest elevation values are in the southern area,
where they are very close to the sea level. Topographic elevation rapid-
ly increases on the surrounding hilly boundaries up to 70-80 m asl, with
quite steep slopes mainly in the northern and south-western sectors of
the basin.

Mapping soil properties
Basic statistics of the soil properties show highly skewed distribu-

tions for most of them, with both negative and positive skeweness coef-
ficients (Table 1). Negative coefficients are for all the soil retention
curve parameters, whereas the soil physical attributes are character-
ized by positive skeweness coefficients, with outliers at the higher val-
ues mainly for electrical conductivity, saturated hydraulic conductivity
and gravel.

Article

Figure 3. Topographic elevation samples locations.

Figure 4. Frequency (-) distribution of elevation data.
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The correlation matrix (Table 2) shows that the strongest correla-
tions occur between the adjacent soil water values of the retention
curve (θ(h)), whereas they tend to decrease as the distance increases.
Clay and sand have positive and negative correlations, respectively,
with the water values corresponding to different water potential. The
skeleton is negatively correlated with θ at the water potentials less
than -3.37 m and with the clay content, but positively with the sand.

Elevation is not significantly correlated with the soil properties,
whereas it is negatively correlated with the θ at the potentials less than
-0.10 m. The electrical conductivity is correlated positively with θ at the
lowest potential and negatively with sand and saturated hydraulic con-
ductivity Ks. No relevant anisotropy was observed in the variogram

maps of the soil variables and all the variograms looked to be upper
bounded (not shown), so that an intrinsic stationarity was assumed for
all the soil variables. An isotropic linear model of coregionalization was
then fitted to model the experimental variograms, including three basic
structures, revealed by the visual inspection of the experimental vari-
ogram matrix: a nugget effect, a spherical model with a 1000-m range
and a spherical model with a 4000-m range. The co-kriging maps of the
variables show a clear dependence on the physical characters of the
basin (Figure 5 a-r).

As regards the water values of the retention curve, it can be seen that
the maps at the highest values of the matric potential look quite vari-
able, without any clear structure (Figure 5 a-e). It can be observed the
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Table 1. Basic statistics of variables. 

Variable Points Min Max Mean St. dev. Variance Var. coeff. Skewness

θ h=0 m* 128 0.23 0.61 0.42 0.05 0.0034 0.14 -0.12
θ h=-0.05 m* 128 0.22 0.59 0.41 0.05 0.0033 0.14 -0.18
θ h=-0.10 m* 128 0.22 0.57 0.4 0.05 0.0029 0.13 -0.21
θ h=-0.40 m* 128 0.16 0.45 0.35 0.04 0.0023 0.13 -0.91
θ h=-0.70 m* 128 0.12 0.44 0.33 0.04 0.0024 0.15 -1.09
θ h=-1.20 m* 128 0.11 0.42 0.31 0.04 0.0024 0.16 -0.99
θ h=-3.37 m* 128 0.1 0.41 0.28 0.05 0.0031 0.19 -0.57
θ h=-10.2 m* 128 0.08 0.34 0.23 0.05 0.0027 0.22 -0.36
θ h=-30.6 m* 128 0.06 0.29 0.19 0.04 0.0021 0.23 -0.28
θ h=-153 m* 128 0.05 0.28 0.17 0.04 0.0019 0.25 -0.07
Clay (%)° 128 12 65 38.31 11.2 125.4 0.29 -0.14
Sand (%)# 128 0 76 36.11 14.4 207.3 0.4 0.41
Skeleton (%)§ 128 0.07 37.9 8.15 10.09 101.8 1.24 1.41
Ks (cm/h)^ 128 0.28 117.8 23.47 22.76 518.2 0.97 1.32
EC1:5 (mS/cm)$ 128 0.08 1.7 0.32 0.16 0.0286 0.53 4.39
pH 128 7.2 8.5 7.93 0.17 0.0307 0.02 -0.11
Elevation 3591 0 160 49.08 26.91 724.4 0.54 0.89
*Soil water content, θ, corresponding to h values ranging from 0÷-153 m; °clay content; #sand content; §skeleton content; ^saturated hydraulic conductivity Ks; $electrical conductivity of saturated extract.

Table 2. Correlation matrix of the studied variables. All correlation coefficients >0.23 are significative at P<0.01. 

Variabile θ h= θ h= θ h= θ h= θ h= θ h= θ h= θ h= θ h= θ h= Clay Sand Skeleton Ksat EC1:5 pH Elevation
0 m -0.05 m -0.10 m -0.40 m -0.70 m -1.20 m -3.37 m -10.2 m -30.6 m -153 m

θ h=0 m* 1
θ h=-0.05 m* 0.98 1
θ h=-0.10 m* 0.93 0.98 1
θ h=-0.40 m* 0.72 0.77 0.83 1
θ h=-0.70 m* 0.61 0.66 0.71 0.97 1
θ h=-1.20 m* 0.52 0.55 0.6 0.91 0.97 1
θ h=-3.37 m* 0.37 0.4 0.42 0.74 0.84 0.89 1
θ h=-10.2 m* 0.41 0.44 0.46 0.75 0.82 0.87 0.97 1
θ h=-30.6 m* 0.4 0.43 0.46 0.74 0.82 0.87 0.97 0.99 1
θ h=-153 m* 0.38 0.39 0.41 0.66 0.73 0.78 0.91 0.93 0.93 1
Clay° 0.15 0.15 0.17 0.52 0.65 0.73 0.85 0.86 0.85 0.81 1
Sand# -0.26 -0.28 -0.3 -0.64 -0.74 -0.8 -0.9 -0.91 -0.91 -0.87 -0.92 1
Skeleton§ 0.18 0.2 0.21 -0.06 -0.16 -0.21 -0.38 -0.36 -0.36 -0.37 -0.46 0.38 1
Ks^ 0.27 0.18 0.11 0.06 0.09 0.09 0.11 0.1 0.08 0.09 0.12 -0.08 -0.05 1
EC1:5$ 0.04 0.07 0.08 0.14 0.16 0.18 0.19 0.2 0.22 0.28 0.15 -0.26 -0.05 -0.33 1
pH 0.01 -0.06 -0.1 0.03 0.1 0.14 0.18 0.19 0.19 0.22 0.34 -0.26 -0.21 0.2 0.04 1
Elevation data -0.07 -0.15 -0.22 -0.3 -0.29 -0.27 -0.23 -0.24 -0.23 -0.12 -0.12 0.26 -0.22 0.15 0.05 0.35 1
*Soil water content, θ, corresponding to h values ranging from 0÷-153 m; °clay content; #sand content; §skeleton content; ^saturated hydraulic conductivity Ks; $electrical conductivity of saturated extract.
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highest soil moisture values (greater than 0.5%) are tendentially dis-
tributed in the north-western portion of the basin, whereas the lowest
values (0.30÷0.25%) are found in a large area located on the southern
and south-western sectors.

As the matric potential decreases, the spatial structures of θ look
quite similar to the morphological and lithological settings of the basin.
The θ maps at h=-30.6 m and h=-153 m (Figure 5 i-l) show that the
lowest values occur in the western and south-western sectors of the

area, roughly corresponding to the outcropping area of the marine ter-
raced deposits composed by sands and silty-sands. On the contrary, the
highest values are located in the eastern sector of the basin and seem
to follow the main surface drainage patterns in the flattest portions of
the area. The dependence of θ at the lowest potentials on the soil tex-
ture and lithological composition of parent material is confirmed by the
similarity of their maps with the ones of sand, clay and skeleton
(Figure 5 o,p,q).

Article

Figure 5. Co-kriging maps of the analysed variables (a-h). 
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The western sector of the basin, where the terraced deposits outcrop,
is characterized by high sand and silty sand content but very low clay
contents. In this area the soil is also characterized by abundant skele-
ton and low θ at the lowest matric potential.

On the contrary, the clay content is higher and the sand content very
poor in some areas of the floodplain, where θ at the lowest potential is
tendentially higher. The electrical conductivity map shows a significant

dependence on the topography, since the lowest values of EC are locat-
ed in areas corresponding to the steeper slopes, whereas the flat area
in the floodplain is characterized by a more conductive soil.

Most spatial variation occurs at the shorter scale, i.e. within a dis-
tance of 1000 m, as results from the sum of the eigenvalues at the dif-
ferent spatial scales (Table 3). Retaining only the eigenvectors with
eigenvalues greater than one, the first factor at the shorter range
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Figure 5. Co-kriging maps of the analysed variables (i-r). 

Non
-co

mmerc
ial

 us
e o

nly



[page 26] [Italian Journal of Agronomy 2012; 7:e4]

Article

explains most of the spatial variability, more than 74% of the variance
at this scale, whereas, at the longer range, the first factor explains the
57% and the second factor the 27% of the variance.

On the first factor at shorter range all θs of the retention curve and
clay weigh mainly and positively; on the contrary, on the first factor at
longer range the elevation weighs more and negatively, whereas clay,
electrical conductivity and θ, at the potentials less than -3.37 m, weigh
positively (Table 3).

The second factor at longer range, which describes only a small pro-
portion of the variation, is more related to the behaviour of the soil at
the saturation and at the higher water potentials (Table 3).

In summary, we can say that the first factor at shorter range provides
an overall description of the soil variability occurring within a very
short distance (less than 1000 m), whereas the two factors at longer
range contribute to describe two complementary conditions: the first
factor is more related to water stress conditions, preferentially occur-
ring in the lowest sectors of the area, more likely at soil salinisation
hazard; the second factor provides a description of the behaviour of the
soil in no water stress conditions. The cokriging maps were displayed
only for the first regionalised factors at the two spatial scales, because
of the variance percentage explained by them; they can then be used to
localize the natural and anthropogenic processes affecting soil quality.

The map of the first factor at shorter range (F11000 m) shows a sensi-
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Figure 6. Map of the first regionalized factor at shorter range.

Figure 7. Map of the first regionalized factor at longer range.
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ble erratic distribution, characterized by several hot spots due to local
variation of the soil hydraulic properties, which might be attributed to
differences in the intrinsic properties of the soil and/or different soil
management (Figure 6). The map of the first regionalized factor at
longer range (F14000 m) highlights the presence of some wide areas
characterized by different scores of the factor (Figure 7), ascribable to
a different degree of soil salinization hazard, owing to the positive rela-
tionships between the factor and the electrical conductivity. The high-
er values of this factor are mainly distributed in the central and the low-
est sectors of the floodplain, characterized by high clay contents which
favour salt accumulation in the soil.

On the contrary, the lowest factor values are mainly distributed on
the western portion and on the northern and south-eastern boundaries
of the basin, where the lithological and morphological conditions make
easy the soil drainage. In the western sector the presence of terraced
sandy deposits determines a quite permeable soil, easily draining
water in depth. In the other sectors of the basin, characterized by the
lowest factor values, the steep slopes determine high energy of surface
water, which causes a washout action that does not allow salt accumu-
lation in the top soil.

Conclusions

The proposed approach, based on a set of geostatistical techniques,
allowed partitioning a basin of south-western Sicily into areas charac-
terized by different degree of soil salinization.

Multivariate geostatistics has allowed to disclose the spatial struc-
tures of coregionalization of the variables that are involved in the soil
salinization processes and to map the most relevant regionalized fac-
tors, so to delineate regions at different salinization risk.

The geostatistical analysis has revealed that the soil salinization risk
in the study site might be related to both anthropogenic actions, main-
ly acting at local scale and due to agricultural activities, and environ-
mental settings of the basin, such as the lithological and textural com-
positions, the topography and the hydraulic soil properties.

The proposed methodology could be a valid support for land use and
soil remediation planning at regional scale. Moreover, the obtained
results could also be used to direct the farmers to intensify soil sam-
pling and monitoring in those areas at high risk of salinization.
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