**Supplementary Materials**

Table S1. Morphological and growth traits of maize at different levels of salinity and salicylic acid.

<table>
<thead>
<tr>
<th>Source</th>
<th>Plant height (cm)</th>
<th>Leaf number</th>
<th>Leaf DW (g plant⁻¹)</th>
<th>Stem DW (g plant⁻¹)</th>
<th>Shoot DW (g plant⁻¹)</th>
<th>Root DW (g plant⁻¹)</th>
<th>R:S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>64.1 a</td>
<td>5.6 a</td>
<td>1.79 a</td>
<td>3.27 a</td>
<td>5.05 a</td>
<td>1.61 a</td>
<td>0.32 b</td>
</tr>
<tr>
<td>6 dS m⁻¹</td>
<td>57.8 b</td>
<td>5.0 b</td>
<td>1.29 b</td>
<td>3.29 a</td>
<td>4.58 b</td>
<td>1.45 b</td>
<td>0.32 b</td>
</tr>
<tr>
<td>12 dS m⁻¹</td>
<td>53.6 c</td>
<td>4.3 c</td>
<td>1.17 c</td>
<td>2.60 b</td>
<td>3.76 c</td>
<td>1.35 c</td>
<td>0.36 a</td>
</tr>
<tr>
<td></td>
<td>P &lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>0.897</td>
</tr>
<tr>
<td>SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>54.4 c</td>
<td>4.2 c</td>
<td>1.31 c</td>
<td>2.88 c</td>
<td>4.19 c</td>
<td>1.38 c</td>
<td>0.33</td>
</tr>
<tr>
<td>300 mM</td>
<td>58.3 b</td>
<td>5.0 b</td>
<td>1.42 b</td>
<td>3.05 b</td>
<td>4.47 b</td>
<td>1.47 b</td>
<td>0.33</td>
</tr>
<tr>
<td>600 mM</td>
<td>62.8 a</td>
<td>5.7 a</td>
<td>1.51 a</td>
<td>3.22 a</td>
<td>4.73 a</td>
<td>1.57 a</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>P &lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>0.897</td>
</tr>
<tr>
<td>Salinity × SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 / 0</td>
<td>60.3 cd</td>
<td>4.7</td>
<td>1.67</td>
<td>3.17 cd</td>
<td>4.85 c</td>
<td>1.51</td>
<td>0.31</td>
</tr>
<tr>
<td>0 / 300</td>
<td>64.3 b</td>
<td>5.7</td>
<td>1.81</td>
<td>3.27 bc</td>
<td>5.08 b</td>
<td>1.61</td>
<td>0.32</td>
</tr>
<tr>
<td>0 / 600</td>
<td>67.7 a</td>
<td>6.3</td>
<td>1.88</td>
<td>3.36 b</td>
<td>5.24 a</td>
<td>1.70</td>
<td>0.32</td>
</tr>
<tr>
<td>6 / 0</td>
<td>54.7 ef</td>
<td>4.3</td>
<td>1.18</td>
<td>3.09 d</td>
<td>4.27 e</td>
<td>1.36</td>
<td>0.32</td>
</tr>
<tr>
<td>6 / 300</td>
<td>57.3 de</td>
<td>5.0</td>
<td>1.29</td>
<td>3.30 b</td>
<td>4.59 d</td>
<td>1.45</td>
<td>0.32</td>
</tr>
<tr>
<td>6 / 600</td>
<td>61.4 bc</td>
<td>5.7</td>
<td>1.39</td>
<td>3.49 a</td>
<td>4.87 c</td>
<td>1.54</td>
<td>0.32</td>
</tr>
<tr>
<td>12 / 0</td>
<td>48.2 g</td>
<td>3.7</td>
<td>1.06</td>
<td>2.39 g</td>
<td>3.46 h</td>
<td>1.26</td>
<td>0.36</td>
</tr>
<tr>
<td>12 / 300</td>
<td>53.2 f</td>
<td>4.3</td>
<td>1.17</td>
<td>2.57 f</td>
<td>3.74 g</td>
<td>1.34</td>
<td>0.36</td>
</tr>
<tr>
<td>12 / 600</td>
<td>59.3 cd</td>
<td>5.0</td>
<td>1.26</td>
<td>2.83 e</td>
<td>4.09 f</td>
<td>1.46</td>
<td>0.36</td>
</tr>
<tr>
<td>P</td>
<td>0.028*</td>
<td>0.057 n.s.</td>
<td>0.936 n.s.</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>0.791 n.s.</td>
<td>0.186 n.s.</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.3</td>
<td>1.4</td>
<td>1.2</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

SA, salicylic acid; DW, dry weight; R:S, root to shoot ratio; n.s., * and ** indicate non-significant and significant at \( P \leq 0.05 \) and \( P \leq 0.01 \), respectively. Different letters indicate statistical differences (Tukey test at \( P \leq 0.05 \)).
Table S2. Leaf water status and leaf pigments in maize at different levels of salinity and salicylic acid.

<table>
<thead>
<tr>
<th>Source</th>
<th>RWC (%)</th>
<th>EL (%)</th>
<th>Chl. a (mg g(^{-1}) FW)</th>
<th>Chl. b (mg g(^{-1}) FW)</th>
<th>Carotenoids (mg g(^{-1}) FW)</th>
<th>Anthocyanin (mg g(^{-1}) FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Salinity</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>64.4 a</td>
<td>31.2 b</td>
<td>1.77 a</td>
<td>1.31 a</td>
<td>0.59 a</td>
<td>0.38 a</td>
</tr>
<tr>
<td>6 dS m(^{-1})</td>
<td>50.6 b</td>
<td>39.4 a</td>
<td>1.57 b</td>
<td>1.03 b</td>
<td>0.52 b</td>
<td>0.34 b</td>
</tr>
<tr>
<td>12 dS m(^{-1})</td>
<td>44.8 c</td>
<td>41.5 a</td>
<td>1.45 c</td>
<td>0.67 c</td>
<td>0.45 c</td>
<td>0.28 c</td>
</tr>
<tr>
<td><strong>P</strong></td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td><strong>SA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>48.6 c</td>
<td>42.2 a</td>
<td>1.50 c</td>
<td>0.81 c</td>
<td>0.48 c</td>
<td>0.31 c</td>
</tr>
<tr>
<td>300 mM</td>
<td>53.2 b</td>
<td>37.1 b</td>
<td>1.60 b</td>
<td>1.00 b</td>
<td>0.52 b</td>
<td>0.34 b</td>
</tr>
<tr>
<td>600 mM</td>
<td>57.9 a</td>
<td>32.8 c</td>
<td>1.70 a</td>
<td>1.19 a</td>
<td>0.56 a</td>
<td>0.36 a</td>
</tr>
<tr>
<td><strong>P</strong></td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td><strong>Salinity × SA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 / 0</td>
<td>59.1 c</td>
<td>34.2 cde</td>
<td>1.67</td>
<td>1.12</td>
<td>0.54 c</td>
<td>0.36 c</td>
</tr>
<tr>
<td>0 / 300</td>
<td>64.2 b</td>
<td>30.7 de</td>
<td>1.77</td>
<td>1.31</td>
<td>0.59 b</td>
<td>0.39 b</td>
</tr>
<tr>
<td>0 / 600</td>
<td>69.9 a</td>
<td>28.9 e</td>
<td>1.87</td>
<td>1.49</td>
<td>0.64 a</td>
<td>0.41 a</td>
</tr>
<tr>
<td>6 / 0</td>
<td>46.0 g</td>
<td>45.7 a</td>
<td>1.47</td>
<td>0.85</td>
<td>0.48 e</td>
<td>0.32 e</td>
</tr>
<tr>
<td>6 / 300</td>
<td>50.7 e</td>
<td>38.7 bc</td>
<td>1.57</td>
<td>1.03</td>
<td>0.52 d</td>
<td>0.35 d</td>
</tr>
<tr>
<td>6 / 600</td>
<td>54.9 d</td>
<td>33.7 cde</td>
<td>1.67</td>
<td>1.21</td>
<td>0.57 b</td>
<td>0.37 c</td>
</tr>
<tr>
<td>12 / 0</td>
<td>40.7 h</td>
<td>46.8 a</td>
<td>1.36</td>
<td>0.48</td>
<td>0.43 f</td>
<td>0.26 h</td>
</tr>
<tr>
<td>12 / 300</td>
<td>44.7 g</td>
<td>41.9 ab</td>
<td>1.45</td>
<td>0.66</td>
<td>0.44 f</td>
<td>0.27 g</td>
</tr>
<tr>
<td>12 / 600</td>
<td>48.8 f</td>
<td>35.7 ed</td>
<td>1.55</td>
<td>0.85</td>
<td>0.47 e</td>
<td>0.30 f</td>
</tr>
<tr>
<td><strong>P</strong></td>
<td>0.026*</td>
<td>0.046*</td>
<td>0.972 n.s.</td>
<td>0.992 n.s.</td>
<td>0.333 n.s.</td>
<td>0.026*</td>
</tr>
<tr>
<td><strong>C.V. (%)</strong></td>
<td>1.2</td>
<td>5.0</td>
<td>1.0</td>
<td>2.2</td>
<td>1.3</td>
<td>1.1</td>
</tr>
</tbody>
</table>

SA, salicylic acid; FW, fresh weight; RWC, relative water content; EL, electrolyte leakage; Chl. a and b, chlorophyll a and b, respectively; n.s., *, and ** indicate non-significant and significant at \( P \leq 0.05 \) and \( P \leq 0.01 \), respectively. Different letters indicate statistical differences (Tukey test at \( P \leq 0.05 \)).
Table S3. Antioxidant enzymes and oxidative stress markers in maize at different levels of salinity and salicylic acid.

<table>
<thead>
<tr>
<th>Source</th>
<th>POD (U mg(^{-1}) prot.)</th>
<th>CAT (mg g(^{-1}) FW)</th>
<th>APX (nmol g(^{-1}) FW)</th>
<th>Vitamin C (mg g(^{-1}) FW)</th>
<th>H(_2)O(_2) (nmol g(^{-1}) FW)</th>
<th>MDA (nmol g(^{-1}) FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Salinity</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4.00 c</td>
<td>0.65 c</td>
<td>22.1 c</td>
<td>4.50 c</td>
<td>6.49 c</td>
<td>5.20 c</td>
</tr>
<tr>
<td>6 dS m(^{-1})</td>
<td>5.00 b</td>
<td>0.84 b</td>
<td>33.0 b</td>
<td>5.45 b</td>
<td>7.39 b</td>
<td>5.51 b</td>
</tr>
<tr>
<td>12 dS m(^{-1})</td>
<td>5.74 a</td>
<td>1.18 a</td>
<td>47.6 a</td>
<td>6.44 a</td>
<td>8.66 a</td>
<td>5.61 a</td>
</tr>
<tr>
<td>(P)</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td><strong>SA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4.01 c</td>
<td>0.82 c</td>
<td>31.0 c</td>
<td>4.43 c</td>
<td>7.82 a</td>
<td>5.59 a</td>
</tr>
<tr>
<td>300 mM</td>
<td>5.00 b</td>
<td>0.90 b</td>
<td>34.5 b</td>
<td>5.45 b</td>
<td>7.50 b</td>
<td>5.45 b</td>
</tr>
<tr>
<td>600 mM</td>
<td>5.73 a</td>
<td>0.95 a</td>
<td>37.3 a</td>
<td>6.52 a</td>
<td>7.22 c</td>
<td>5.28 c</td>
</tr>
<tr>
<td>(P)</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td><strong>Salinity × SA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 / 0</td>
<td>3.21 e</td>
<td>0.59 g</td>
<td>19.1 i</td>
<td>3.49 i</td>
<td>6.87</td>
<td>5.32 de</td>
</tr>
<tr>
<td>0 / 300</td>
<td>4.09 d</td>
<td>0.67 f</td>
<td>22.4 h</td>
<td>4.49 g</td>
<td>6.39</td>
<td>5.22 e</td>
</tr>
<tr>
<td>0 / 600</td>
<td>4.70 c</td>
<td>0.69 f</td>
<td>25.0 g</td>
<td>5.53 d</td>
<td>6.22</td>
<td>5.06 f</td>
</tr>
<tr>
<td>6 / 0</td>
<td>3.94 d</td>
<td>0.76 e</td>
<td>28.9 f</td>
<td>4.40 h</td>
<td>7.65</td>
<td>5.65 b</td>
</tr>
<tr>
<td>6 / 300</td>
<td>5.03 c</td>
<td>0.82 d</td>
<td>33.7 e</td>
<td>5.43 e</td>
<td>7.43</td>
<td>5.48 e</td>
</tr>
<tr>
<td>6 / 600</td>
<td>6.03 b</td>
<td>0.95 c</td>
<td>36.4 d</td>
<td>6.51 b</td>
<td>7.08</td>
<td>5.39 cd</td>
</tr>
<tr>
<td>12 / 0</td>
<td>4.87 c</td>
<td>1.10 b</td>
<td>44.9 c</td>
<td>5.40 f</td>
<td>8.94</td>
<td>5.78 a</td>
</tr>
<tr>
<td>12 / 300</td>
<td>5.87 b</td>
<td>1.22 a</td>
<td>47.4 b</td>
<td>6.42 c</td>
<td>8.67</td>
<td>5.65 b</td>
</tr>
<tr>
<td>12 / 600</td>
<td>6.48 a</td>
<td>1.21 a</td>
<td>50.5 a</td>
<td>7.51 a</td>
<td>8.37</td>
<td>5.4 cd</td>
</tr>
<tr>
<td>(P)</td>
<td>0.030*</td>
<td>&lt; 0.001**</td>
<td>0.008**</td>
<td>&lt; 0.001**</td>
<td>0.314 n.s.</td>
<td>0.027*</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>3.1</td>
<td>1.3</td>
<td>1.4</td>
<td>0.1</td>
<td>1.4</td>
<td>0.8</td>
</tr>
</tbody>
</table>

SA, salicylic acid; FW, fresh weight; POD, peroxidase; CAT, catalase; APX, ascorbate peroxidase; MDA, malondialdehyde; U, units; n.s., * and ** indicate non-significant and significant at \(P \leq 0.05\) and \(P \leq 0.01\), respectively. Different letters indicate statistical differences (Tukey test at \(P \leq 0.05\)).
Table S4. Osmo-regulating compounds and hormones in maize at different levels of salinity and salicylic acid.

<table>
<thead>
<tr>
<th>Source</th>
<th>Free a.a. (mg g⁻¹ FW)</th>
<th>Sol. proteins (mg g⁻¹ FW)</th>
<th>Sol. sugars (mg g⁻¹ FW)</th>
<th>Proline (µmol g⁻¹ FW h⁻¹)</th>
<th>IAA (µmol g⁻¹ FW)</th>
<th>GA (nmol g⁻¹ FW)</th>
<th>ABA (pmol g⁻¹ FW)</th>
<th>Ethylene evolution (pmol g⁻¹ FW h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Salinity</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2.00 a</td>
<td>6.29 a</td>
<td>11.2 c</td>
<td>0.60 c</td>
<td>26.5 c</td>
<td>82.0 a</td>
<td>41.5 c</td>
<td>72 c</td>
</tr>
<tr>
<td>6 dS m⁻¹</td>
<td>1.78 b</td>
<td>5.55 b</td>
<td>15.1 b</td>
<td>0.74 b</td>
<td>28.5 b</td>
<td>64.7 b</td>
<td>44.8 b</td>
<td>145 b</td>
</tr>
<tr>
<td>12 dS m⁻¹</td>
<td>1.61 c</td>
<td>4.57 c</td>
<td>17.2 a</td>
<td>0.93 a</td>
<td>33.1 a</td>
<td>49.8 c</td>
<td>48.8 a</td>
<td>167 a</td>
</tr>
<tr>
<td><strong>P</strong></td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td><strong>SA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.73 c</td>
<td>5.28 c</td>
<td>13.1 c</td>
<td>0.67 c</td>
<td>26.9 c</td>
<td>61.1 c</td>
<td>47.2 a</td>
<td>140 a</td>
</tr>
<tr>
<td>300 mM</td>
<td>1.80 b</td>
<td>5.48 b</td>
<td>14.7 b</td>
<td>0.76 b</td>
<td>29.8 b</td>
<td>65.7 b</td>
<td>44.9 b</td>
<td>127 b</td>
</tr>
<tr>
<td>600 mM</td>
<td>1.86 a</td>
<td>5.65 a</td>
<td>15.6 a</td>
<td>0.84 a</td>
<td>31.4 a</td>
<td>69.7 a</td>
<td>43.0 c</td>
<td>117 c</td>
</tr>
<tr>
<td><strong>P</strong></td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td><strong>Salinity × SA</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 / 0</td>
<td>1.90 c</td>
<td>6.03 c</td>
<td>10.2 f</td>
<td>0.55</td>
<td>24.5</td>
<td>78.0</td>
<td>43.4</td>
<td>78 f</td>
</tr>
<tr>
<td>0 / 300</td>
<td>2.02 b</td>
<td>6.33 b</td>
<td>11.3 c</td>
<td>0.61</td>
<td>26.5</td>
<td>82.0</td>
<td>41.5</td>
<td>72 fg</td>
</tr>
<tr>
<td>0 / 600</td>
<td>2.08 a</td>
<td>6.50 a</td>
<td>12.0 e</td>
<td>0.65</td>
<td>28.6</td>
<td>86.0</td>
<td>39.5</td>
<td>65 g</td>
</tr>
<tr>
<td>6 / 0</td>
<td>1.72 f</td>
<td>5.33 f</td>
<td>13.4 d</td>
<td>0.65</td>
<td>26.7</td>
<td>60.0</td>
<td>46.7</td>
<td>155 bc</td>
</tr>
<tr>
<td>6 / 300</td>
<td>1.79 e</td>
<td>5.61 e</td>
<td>15.2 e</td>
<td>0.75</td>
<td>28.3</td>
<td>65.6</td>
<td>44.5</td>
<td>146 d</td>
</tr>
<tr>
<td>6 / 600</td>
<td>1.82 d</td>
<td>5.70 d</td>
<td>16.7 b</td>
<td>0.81</td>
<td>30.5</td>
<td>68.6</td>
<td>43.1</td>
<td>134 e</td>
</tr>
<tr>
<td>12 / 0</td>
<td>1.55 i</td>
<td>4.47 h</td>
<td>15.7 c</td>
<td>0.82</td>
<td>29.6</td>
<td>45.3</td>
<td>51.4</td>
<td>188 a</td>
</tr>
<tr>
<td>12 / 300</td>
<td>1.60 h</td>
<td>4.50 h</td>
<td>17.6 a</td>
<td>0.92</td>
<td>34.5</td>
<td>49.5</td>
<td>48.6</td>
<td>162 b</td>
</tr>
<tr>
<td>12 / 600</td>
<td>1.67 g</td>
<td>4.74 g</td>
<td>18.2 a</td>
<td>1.06</td>
<td>35.1</td>
<td>54.5</td>
<td>46.5</td>
<td>151 cd</td>
</tr>
<tr>
<td><strong>P</strong></td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>0.002**</td>
<td>0.139 n.s.</td>
<td>0.710 n.s.</td>
<td>0.890 n.s.</td>
<td>0.834 n.s.</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td><strong>C.V. (%)</strong></td>
<td>0.5</td>
<td>0.6</td>
<td>2.0</td>
<td>3.3</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SA, salicylic acid; FW, fresh weight; Free a.a., free amino acids; IAA, indole-3-acetic acid; GA, gibberellic acid; ABA, abscisic acid; n.s., * and ** indicate non-significant and significant at $P \leq 0.05$ and $P \leq 0.01$, respectively. Different letters indicate statistical differences (Tukey test at $P \leq 0.05$).
Table S5. Sodium, potassium and calcium concentrations in plant organs of maize at different levels of salinity and salicylic acid.

<table>
<thead>
<tr>
<th>Source</th>
<th>Na_R</th>
<th>Na_S</th>
<th>Na_L</th>
<th>K_R</th>
<th>K_S</th>
<th>K_L</th>
<th>Ca_R</th>
<th>Ca_S</th>
<th>Ca_L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mg g⁻¹ DW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.8 c</td>
<td>3.5 c</td>
<td>2.0 c</td>
<td>24.7 a</td>
<td>30.8 a</td>
<td>18.2 a</td>
<td>63 a</td>
<td>90 a</td>
<td>89 a</td>
</tr>
<tr>
<td>6 dS m⁻¹</td>
<td>14.0 b</td>
<td>15.5 b</td>
<td>8.2 b</td>
<td>18.5 b</td>
<td>23.0 b</td>
<td>15.0 b</td>
<td>53 b</td>
<td>80 b</td>
<td>77 b</td>
</tr>
<tr>
<td>12 dS m⁻¹</td>
<td>15.5 a</td>
<td>24.8 a</td>
<td>9.6 a</td>
<td>16.4 c</td>
<td>16.3 c</td>
<td>12.2 c</td>
<td>44 c</td>
<td>67 c</td>
<td>60 c</td>
</tr>
<tr>
<td>P</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td>SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>11.4 a</td>
<td>16.3 a</td>
<td>7.1 a</td>
<td>18.7 c</td>
<td>21.5 c</td>
<td>13.4 c</td>
<td>48 c</td>
<td>74 c</td>
<td>64 c</td>
</tr>
<tr>
<td>300 mM</td>
<td>10.3 b</td>
<td>14.7 b</td>
<td>6.5 b</td>
<td>19.7 b</td>
<td>22.9 b</td>
<td>15.3 b</td>
<td>54 b</td>
<td>79 b</td>
<td>76 b</td>
</tr>
<tr>
<td>600 mM</td>
<td>9.6 c</td>
<td>12.8 c</td>
<td>6.1 c</td>
<td>21.1 a</td>
<td>25.8 a</td>
<td>16.7 a</td>
<td>58 a</td>
<td>83 a</td>
<td>86 a</td>
</tr>
<tr>
<td>P</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td>Salinity × SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 / 0</td>
<td>2.5 f</td>
<td>4.0 g</td>
<td>2.2 f</td>
<td>23.0</td>
<td>29.4</td>
<td>17.0 b</td>
<td>58</td>
<td>86</td>
<td>79</td>
</tr>
<tr>
<td>0 / 300</td>
<td>1.6 g</td>
<td>3.7 gh</td>
<td>1.9 f</td>
<td>24.5</td>
<td>30.8</td>
<td>18.4 a</td>
<td>63</td>
<td>91</td>
<td>90</td>
</tr>
<tr>
<td>0 / 600</td>
<td>1.5 g</td>
<td>2.7 h</td>
<td>1.8 f</td>
<td>26.5</td>
<td>32.3</td>
<td>19.2 a</td>
<td>68</td>
<td>93</td>
<td>99</td>
</tr>
<tr>
<td>6 / 0</td>
<td>15.4 b</td>
<td>17.7 d</td>
<td>8.8 c</td>
<td>17.6</td>
<td>20.8</td>
<td>13.2 d</td>
<td>47</td>
<td>74</td>
<td>65</td>
</tr>
<tr>
<td>6 / 300</td>
<td>13.8 d</td>
<td>15.3 e</td>
<td>8.2 d</td>
<td>18.4</td>
<td>22.7</td>
<td>15.4 c</td>
<td>55</td>
<td>80</td>
<td>79</td>
</tr>
<tr>
<td>6 / 600</td>
<td>12.9 e</td>
<td>13.6 f</td>
<td>7.6 e</td>
<td>19.5</td>
<td>25.6</td>
<td>16.5 b</td>
<td>58</td>
<td>84</td>
<td>87</td>
</tr>
<tr>
<td>12 / 0</td>
<td>16.3 a</td>
<td>27.3 a</td>
<td>10.4 a</td>
<td>15.6</td>
<td>14.2</td>
<td>10.1 f</td>
<td>39</td>
<td>61</td>
<td>48</td>
</tr>
<tr>
<td>12 / 300</td>
<td>15.6 b</td>
<td>25.1 b</td>
<td>9.45 b</td>
<td>16.3</td>
<td>15.1</td>
<td>12.1 e</td>
<td>45</td>
<td>68</td>
<td>60</td>
</tr>
<tr>
<td>12 / 600</td>
<td>14.5 c</td>
<td>22.1 c</td>
<td>8.97 bc</td>
<td>17.2</td>
<td>19.4</td>
<td>14.5 c</td>
<td>50</td>
<td>73</td>
<td>72</td>
</tr>
<tr>
<td>P</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>0.002**</td>
<td>0.108 n.s.</td>
<td>0.263 n.s.</td>
<td>&lt; 0.001**</td>
<td>0.655 n.s.</td>
<td>0.156 n.s.</td>
<td>0.425 n.s.</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>1.6</td>
<td>2.8</td>
<td>2.7</td>
<td>3.0</td>
<td>4.8</td>
<td>2.3</td>
<td>3.1</td>
<td>1.9</td>
<td>3.1</td>
</tr>
</tbody>
</table>

SA, salicylic acid; _R, _S and _L indicate element concentration in roots, stem and leaves, respectively; n.s., * and ** indicate non-significant and significant at P ≤ 0.05 and P ≤ 0.01, respectively. Different letters indicate statistical differences (Tukey test at P ≤ 0.05).
Table S6. Magnesium and chloride concentration in plant organs of maize at different levels of salinity and salicylic acid.

<table>
<thead>
<tr>
<th>Source</th>
<th>Mg_R</th>
<th>Mg_S</th>
<th>Mg_L</th>
<th>Cl_R</th>
<th>Cl_S</th>
<th>Cl_L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mg g(^{-1}) DW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>55.2 a</td>
<td>71.7 a</td>
<td>64.5 a</td>
<td>1.8 c</td>
<td>5.1 c</td>
<td>1.2 c</td>
</tr>
<tr>
<td>6 dS m(^{-1})</td>
<td>46.0 b</td>
<td>59.1 b</td>
<td>56.7 b</td>
<td>17.8 b</td>
<td>25.4 b</td>
<td>24.1 b</td>
</tr>
<tr>
<td>12 dS m(^{-1})</td>
<td>39.1 c</td>
<td>49.5 c</td>
<td>47.0 c</td>
<td>19.7 a</td>
<td>42.8 a</td>
<td>25.4 a</td>
</tr>
<tr>
<td>P</td>
<td>&lt;0.001**</td>
<td>&lt;0.001**</td>
<td>&lt;0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td>SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>43.1 c</td>
<td>55.8 c</td>
<td>52.5 c</td>
<td>14.5 a</td>
<td>26.5 a</td>
<td>18.2 a</td>
</tr>
<tr>
<td>300 mM</td>
<td>47.3 b</td>
<td>60.1 b</td>
<td>56.1 b</td>
<td>13.0 b</td>
<td>24.6 b</td>
<td>16.9 b</td>
</tr>
<tr>
<td>600 mM</td>
<td>49.7 a</td>
<td>64.7 a</td>
<td>59.5 a</td>
<td>11.8 c</td>
<td>22.1 c</td>
<td>15.6 c</td>
</tr>
<tr>
<td>P</td>
<td>&lt;0.001**</td>
<td>&lt;0.001**</td>
<td>&lt;0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td>Salinity × SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 / 0</td>
<td>51.8</td>
<td>67.4</td>
<td>61.4</td>
<td>1.98 e</td>
<td>6.8 e</td>
<td>1.33 f</td>
</tr>
<tr>
<td>0 / 300</td>
<td>55.7</td>
<td>70.9</td>
<td>64.1</td>
<td>1.84 e</td>
<td>4.8 ef</td>
<td>1.11 f</td>
</tr>
<tr>
<td>0 / 600</td>
<td>57.9</td>
<td>77.1</td>
<td>67.8</td>
<td>1.72 e</td>
<td>3.6 f</td>
<td>1.04 f</td>
</tr>
<tr>
<td>6 / 0</td>
<td>43.5</td>
<td>55.2</td>
<td>53.4</td>
<td>19.5 b</td>
<td>27.1 c</td>
<td>25.6 b</td>
</tr>
<tr>
<td>6 / 300</td>
<td>45.9</td>
<td>59.0</td>
<td>56.2</td>
<td>17.6 c</td>
<td>25.7 c</td>
<td>24.3 cd</td>
</tr>
<tr>
<td>6 / 600</td>
<td>48.6</td>
<td>63.1</td>
<td>60.2</td>
<td>16.2 d</td>
<td>23.4 d</td>
<td>22.3 e</td>
</tr>
<tr>
<td>12 / 0</td>
<td>34.3</td>
<td>44.7</td>
<td>42.6</td>
<td>22.1 a</td>
<td>45.5 a</td>
<td>27.6 a</td>
</tr>
<tr>
<td>12 / 300</td>
<td>40.6</td>
<td>50.3</td>
<td>47.9</td>
<td>19.5 b</td>
<td>43.5 a</td>
<td>25.2 bc</td>
</tr>
<tr>
<td>12 / 600</td>
<td>42.5</td>
<td>53.8</td>
<td>50.4</td>
<td>17.6 c</td>
<td>39.4 b</td>
<td>23.4 d</td>
</tr>
<tr>
<td>P</td>
<td>0.186 n.s.</td>
<td>0.544 n.s.</td>
<td>0.830 n.s.</td>
<td>&lt; 0.001**</td>
<td>0.019*</td>
<td>&lt; 0.001**</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>3.5</td>
<td>2.6</td>
<td>3.8</td>
<td>1.9</td>
<td>3.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

SA, salicylic acid; _R, _S and _L indicate element concentration in roots, stem and leaves, respectively; n.s., * and ** indicate non-significant and significant at \(P \leq 0.05\) and \(P \leq 0.01\), respectively. Different letters indicate statistical differences (Tukey test at \(P \leq 0.05\)).
Figure S1. PCA correlation circle of quantitative variables. The amount of variation explained by the two principal components (Dim1 and Dim2) is indicated in brackets. ABA, abscisic acid; Ant., antocyan; APX, ascorbate peroxidase; Ca_T, total (i.e., whole plant) Ca concentration; Car., carotenoids; CAT, catalase; Chl_T, total (i.e., a + b) chlorophyll content; Cl_T, total Cl concentration; EL, electrolyte leakage; Free a.a., free amino acids; GA, gibberellic acid; Mg_T, total Mg concentration; IAA, indole-3-acetic acid; K_T, total K concentration; MDA, malondialdehyde; Na_T, total Na concentration; POD, peroxidase; R:S, root to shoot; RDW, root dry weight; RWC, relative water content; SDW, shoot dry weight; SP, soluble proteins.