Deconstructing agronomic resource use efficiencies to increase food production

Abstract

Highlights
- Novel ideosystem method of analysing processes of food production, focussing on resource use efficiencies.
- Interactions between resource use efficiencies are asymmetrical.
- The ideosystem concept portrays how far a production system approaches maximum efficiency.

 

Food production per unit land area needs to be increased, thus cropping systems need to use nutrients, water and solar radiation at as close to maximal efficiencies as possible. We deconstruct these efficiencies into their components to define a theoretical crop ideosystem, in which all resource use efficiencies are maximised. This defines an upper biological limit to food production. We then quantify the difference between maximum use efficiencies and those observed in three agronomic systems (maize, cocksfoot, sugarcane) and identify how, in actual farm systems, efficiencies can be raised to raise food production. We find that crop nutrient use efficiency can be limited by low water availability; thus adding nutrients would not raise production but adding water would. The converse situation of water use efficiency being affected by nutrition is not as evident. Ideosystem thinking can be used to define small- and large-scale agronomic systems that optimize water and nutrient use to maximise food production.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P, 2012. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol. Rev. 87: 52-71. DOI: https://doi.org/10.1111/j.1469-185X.2011.00184.x

Bennetzen EH, Smith P, Porter JR, 2016. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global Change Biol. 22: 763–781. DOI: https://doi.org/10.1111/gcb.13120

Donald CM, 1962. In search of yield. J. Aust. Inst. Agric. Sci. 28: 171-178.

Donald CM, 1968. The breeding of crop ideotypes. Euphytica. 17: 385-403. DOI: https://doi.org/10.1007/BF00056241

Ewert F, van Oijen M, Porter JR, 1999. Simulation of growth and development processes of spring wheat in response to CO2 and ozone for different sites and years in Europe using mechanistic crop simulation models. Eur. J. Agron. 10: 231-247. DOI: https://doi.org/10.1016/S1161-0301(99)00013-1

Fischer RA, Byerlee D, Edmeades GO, 2014. Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International Agricultural Research, Canberra.

Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Godfray HCJ. 2013. Sustainable intensification in agriculture: premises and policies. Science. 341: 33-34. DOI: https://doi.org/10.1126/science.1234485

Hay RKM, Porter JR, 2006. The physiology of crop yield. (2nd ed.). Blackwell Publishing Ltd, Oxford.

Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Keating BA, 2014. APSIM - Evolution towards a new generation of agricultural systems simulation. Envt. Model. Software. 62: 627-350. DOI: https://doi.org/10.1016/j.envsoft.2014.07.009

Jones JW, Hoogenboom G, P.orter CH, Boote KJ, Batchelor WD, Hunt LA, Ritchie JT, 2003. The DSSAT cropping system model. Eur. J. Agron. 18: 235-265. DOI: https://doi.org/10.1016/S1161-0301(02)00107-7

Lemaire G, Gastal F, 2009. Quantifying crop responses to nitrogen deficiency and avenues to improve nitrogen use efficiency. In: V.O. Sadras & D.F. Calderini (eds) Crop physiology applications for genetic improvement and agronomy. Academic Press Ltd, Amsterdam NL and London UK, pp, 171-211. DOI: https://doi.org/10.1016/B978-0-12-374431-9.00008-6

Mills A, Moot DJ, Jamieson PD, 2009. Quantifying the effect of nitrogen of productivity of cocksfoot (Dactylis glomerata L.) pastures. Eur. J. Agron. 30: 63-69. DOI: https://doi.org/10.1016/j.eja.2008.07.008

Porter JR, Christensen S, 2013. Deconstructing crop processes and models via identities. Plant Cell Environ. 36: 1919-1925. DOI: https://doi.org/10.1111/pce.12107

Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI, 2014. Food security and food production systems. In: C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, L.L. White (eds) Climate change 2014: impacts, adaptation and vulnerability. part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. and New York, U.S.A, pp 485-533.

Reid JB, 2002. Yield response to nutrient supply across a wide range of conditions - 1. Model derivation. Field Crops Res. 77: 161-171. DOI: https://doi.org/10.1016/S0378-4290(02)00088-6

Sinclair TR, Rufty TW, 2012. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Sec. 1: 94-98. DOI: https://doi.org/10.1016/j.gfs.2012.07.001

Teixeira EI, George M, Herreman T, Brown H, Fletcher A, Chakwizira E, Noble A, 2014. The impact of water and nitrogen limitation on maize biomass and resource-use efficiencies for radiation, water and nitrogen. Field Crops Res. 168: 109-118. DOI: https://doi.org/10.1016/j.fcr.2014.08.002

Thorburn PJ, Dart IK, Biggs IM, Baillie CP, Smith MA, Keating BA, 2003. The fate of

nitrogen applied to sugarcane by trickle irrigation. In: P.J. Thorburn, K.L. Bristow, J.

Annandale (eds) Micro-irrigation: advances in system design and management. Irrig.

Sci. 22:201–209.

Van Noordwijk M, De Willigen P, 1986. Quantitative root ecology as element of soil fertility theory. Neth. J. Agric. Sci. 34: 273-281. DOI: https://doi.org/10.18174/njas.v34i3.16781

Wang X, Christensen S, Svensgaard J, Jensen SM, Liu F, 2020. The effects of cultivar, nitrogen supply and soil type on radiation use efficiency and harvest index in spring wheat. Agronomy. 10: 1391- 1403. DOI: https://doi.org/10.3390/agronomy10091391

Published
2021-03-22
Info
Issue
Section
Early Release
Keywords:
Crop ideosystem, resource deconstruction, resource use efficiency, Zea mays, Dactylis glomerata, Saccharum officinarum.
Statistics
  • Abstract views: 62

  • PDF: 57
  • Supplementary material: 9
  • Supplementary data: 5
How to Cite
Porter, J. R., Thorburn, P. J., Brown, H. E., Teixeira, E. I., Moot, D. J., Mills, A., & Christensen, S. (2021). Deconstructing agronomic resource use efficiencies to increase food production. Italian Journal of Agronomy, (AOP). https://doi.org/10.4081/ija.2021.1694