Smart fertilizers: What should we mean and where should we go?

Abstract

The current agricultural system faces several challenges, the most important being the ability to feed the increasing world population and mitigate climate change. In this context, the improvement of fertilizers’ agronomic efficiency while reducing their cost and environmental impact is one of the biggest tasks. Available literature shows that many efforts have been made to develop innovative fertilizers defined as ‘smart fertilizers’, for which, different interpretations and definitions have been used. This paper aims to define, classify, and describe the new frontier of the so-called smart fertilizers with a particular focus on field-scale studies on herbaceous species. Most of the analysed papers associate the ‘smart’ concept to the controlled and/or slow release of nutrients, using both terms as synonymous. Some others broadened the concept, including the controlled release of nutrients to reduce the environmental impact. Based on our critical analysis of the available literature, we conclude that a fertilizer can be considered ‘smart’ when applied to the soil, it allows control over the rate, timing, and duration of nutrients release. Our new definition is: ‘Smart fertilizer is any single or composed (sub)nanomaterial, multi-component, and/or bioformulation containing one or more nutrients that, through physical, chemical, and/or biological processes, can adapt the timing of nutrient release to the plant nutrient demand, enhancing the agronomic yields and reducing the environmental impact at sustainable costs when compared to conventional fertilizers’.

Highlights

- A smart fertilizer allows to control the rate, timing and duration of nutrients release.
- Nanofertilizers are powder or liquid formulations which involve the synthesis, design and use of materials at the nanoscale level.
- Composite fertilizers are formulations containing nutrients mixed or coated with one or more materials that exploit synergy among materials.
- Bioformulations are fertilizers containing active or dormant microorganisms capable to trigger physiological growth responses in plants.
- Limited information is available for smart fertilizers on herbaceous crops in open field conditions.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Abalos D, Sanchez-Martin L, Garcia-Torres L, van Groenigen JW, Vallejo A. 2014. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Sci. Total Environ. 490:880-8. DOI: https://doi.org/10.1016/j.scitotenv.2014.05.065

Abd El-Azeim MM, Sherif MA, Hussien MS, Haddad SA. 2020. Temporal impacts of different fertilization systems on soil health under arid conditions of potato monocropping. J. Soil Sci. Plant Nutr. 20:322-34. DOI: https://doi.org/10.1007/s42729-019-00110-2

Abdelsalam NR, Fouda MM, Abdel-Megeed A, Ajarem J, Allam AA, El-Naggar ME. 2019. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol 133:1008-18. DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.134

Adams C, Frantz J, Bugbee B. 2013. Macro‐and micronutrient‐release characteristics of three polymer‐coated fertilizers: Theory and measurements. J. Soil Sci. Plant Nutr. 176:76-88. DOI: https://doi.org/10.1002/jpln.201200156

Al-Antary TA, Kahlel A, Ghidan A, Asoufi H. 2020. Effects of nanotechnology liquid fertilizers on fruit set and pods of broad bean (Vicia faba L.). Fresen. Environ. Bull, 29:4794-98.

Al-Uthery HW, Al-Shami QM. 2019. Impact of fertigation of nano NPK fertilizers, nutrient use efficiency and distribution in soil of potato (Solanum tuberosum L.). Plant Arch. 19:1087-96.

Akhtar SS, Amby DB, Hegelund JN, Fimognari L, Großkinsky DK, Westergaard JC, Müller R, Moelbak L, Liu F, Roitsch T. 2020. Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front. Plant Sci. 11:297. DOI: https://doi.org/10.3389/fpls.2020.00297

Arora NK, Verma M, Mishra J. 2017. Rhizobial bioformulations: past, present and future. In: S. Mehnaz (ed.) Rhizotrophs: Plant growth promotion to bioremediation. Springer, Singapore, pp 69-99. DOI: https://doi.org/10.1007/978-981-10-4862-3_4

Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH. 2014. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release, 181:11-21. DOI: https://doi.org/10.1016/j.jconrel.2014.02.020

Babalola OO. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32:1559-1570. DOI: https://doi.org/10.1007/s10529-010-0347-0

Badawi FSF, Biomy AMM, Desoky AH. 2011. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann. Agric. Sci. 56:17-25. DOI: https://doi.org/10.1016/j.aoas.2011.05.005

Bahadar H, Maqbool F, Niaz K, Abdollahi M. 2016. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J. 20:1-11.

Beig B, Niazi MBK, Jahan Z, Hussain A, Zia MH, Mehran MT. 2020. Coating materials for slow release of nitrogen from urea fertilizer: a review. J. Plant Nutr. 43:1510-33. DOI: https://doi.org/10.1080/01904167.2020.1744647

Bernardo MP, Guimarães GG., Majaron VF, Ribeiro C. 2018. Controlled release of phosphate from layered double hydroxide structures: dynamics in soil and application as smart fertilizer. ACS Sustain. Chem. Eng. 6:5152-61. DOI: https://doi.org/10.1021/acssuschemeng.7b04806

Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V. 2014. Arbuscular mycorrhizal fungi and their value for ecosystem management. In: O. Grillo (ed.) Biodiversity: The Dynamic Balance of the Planet. InTech, Rijeta, Croacia, pp 159-91. DOI: https://doi.org/10.5772/58231

Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327-50. DOI: https://doi.org/10.1007/s11274-011-0979-9

Bi S, Barinelli V, Sobkowicz MJ. 2020. Degradable controlled release fertilizer composite prepared via extrusion: fabrication, characterization, and release mechanisms. Polymers 12:301. DOI: https://doi.org/10.3390/polym12020301

Bilgili U, Açikgöz E. 2011. Effects of slow-release fertilizers on turf quality in a turf mixture. Turk. J. Field Crops 16:130-6.

Bley H, Gianello C, Santos LDS, Selau LPR. 2017. Nutrient release, plant nutrition, and potassium leaching from polymer-coated fertilizer. Rev. Bras. Ciênc. 41:e0160142. DOI: https://doi.org/10.1590/18069657rbcs20160142

Bock E, Wilderer PA, Freitag A. 1988. Growth of Nitrobacter in the absence of dissolved oxygen. Water Res. 22:245-50. DOI: https://doi.org/10.1016/0043-1354(88)90085-1

Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1:1-11. DOI: https://doi.org/10.1038/ncomms1046

Bouwman AF, Boumans LJM, Batjes NH. 2002. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochem. Cycles 16:1058. DOI: https://doi.org/10.1029/2001GB001811

Brahmaprakash GP, Sahu PK, Lavanya G, Gupta A, Nair SS, Gangaraddi V. 2020. Role of additives in improving efficiency of bioformulation for plant growth and development. Front. Soil Environ. Microbiol. 1:1-10. DOI: https://doi.org/10.1201/9780429485794-1

Bryant RJ, Anders M, McClung A. 2012. Impact of production practices on physicochemical properties of rice grain quality. J. Sci. Food Agric. 92:564-69. DOI: https://doi.org/10.1002/jsfa.4608

Bunquin MAB, Tandy, S, Beebout, SJ, Schulin, R 2017. Influence of soil properties on zinc solubility dynamics under different redox conditions in non–calcareous soils. Pedosphere 27:96-105. DOI: https://doi.org/10.1016/S1002-0160(17)60299-6

Byrne MP, Tobin JT, Forrestal PJ, Danaher M, Nkwonta CG, Richards K, Cummins E, Hogan AS, O’Callaghan TF. 2020. Urease and nitrification inhibitors—As mitigation tools for greenhouse gas emissions in sustainable dairy systems: a review. Sustainability 12:6018. DOI: https://doi.org/10.3390/su12156018

Cakmak I. 2000. Tansley Review No. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146:185-205. DOI: https://doi.org/10.1046/j.1469-8137.2000.00630.x

Calabi-Floody M, Medina J, Rumpel C, Condron LM, Hernandez M, Dumont M, de la Luz Mora M. 2018. Smart fertilizers as a strategy for sustainable agriculture. Adv. Agron. 147:119-57. DOI: https://doi.org/10.1016/bs.agron.2017.10.003

Calabi-Floody M, Medina J, Suazo J, Ordiqueo M, Aponte H, Mora MDLL, Rumpel C. 2019. Optimization of wheat straw co-composting for carrier material development. Waste Manage. 98:37-49. DOI: https://doi.org/10.1016/j.wasman.2019.07.041

Callahan BP, Yuan Y, Wolfenden R. 2005. The burden borne by urease. J. Am. Chem. Soc. 127:10828-9. DOI: https://doi.org/10.1021/ja0525399

Cameron KC, Di HJ, Moir JL. 2013. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162:145-73. DOI: https://doi.org/10.1111/aab.12014

Cantarella H, Otto R, Soares JR, de Brito Silva AG. 2018. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 13:19-27. DOI: https://doi.org/10.1016/j.jare.2018.05.008

Carreres R, Sendra J, Ballesteros R, Valiente EF, Quesada A, Carrasco D, Leganés F, de la Cuadra JG. 2003. Assessment of slow release fertilizers and nitrification inhibitors in flooded rice. Biol. Fertil. Soils 39:80-7. DOI: https://doi.org/10.1007/s00374-003-0684-4

Cazzato E, Tufarelli V, Ceci E, Stellacci AM, Laudadio V. 2012. Quality, yield and nitrogen fixation of faba bean seeds as affected by sulphur fertilization. Acta Agr. Scand. B-S P 62:732-8. DOI: https://doi.org/10.1080/09064710.2012.698642

Chen D, Freney JR, Rochester I, Constable GA, Mosier AR, Chalk PM. 2008b. Evaluation of a polyolefin coated urea (Meister) as a fertilizer for irrigated cotton. Nutr. Cycling Agroecosyst. 81:245-54. DOI: https://doi.org/10.1007/s10705-007-9160-0

Chen D, Suter H, Islam A, Edis R, Freney JR, Walker CN. 2008a. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res. 46:289-301. DOI: https://doi.org/10.1071/SR07197

Chen J, Lü S, Zhang Z, Zhao X, Li X, Ning P, Liu M. 2018. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 613:829-39. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.186

Chhipa H. 2017. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 15:15-22. DOI: https://doi.org/10.1007/s10311-016-0600-4

Cordell D, White S. 2014. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39:161-88. DOI: https://doi.org/10.1146/annurev-environ-010213-113300

Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese FF. 2009. Nanoparticle dermal absorption and toxicity: a review of the literature. Int. Arch. Occup. Environ. Health 82:1043-55. DOI: https://doi.org/10.1007/s00420-009-0458-x

Cruchaga S, Artola E, Lasa B, Ariz I, Irigoyen I, Moran JF, Aparicio-Tejo PM. 2011. Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea. J. Plant Physiol. 168:329-36. DOI: https://doi.org/10.1016/j.jplph.2010.07.024

Cunliffe M, Kertesz MA. 2006. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ. Pollut. 144:228-37. DOI: https://doi.org/10.1016/j.envpol.2005.12.026

da Cruz DF, Bortoletto-Santos R, Guimarães GGF, Polito WL, Ribeiro C. 2017. Role of polymeric coating on the phosphate availability as a fertilizer: insight from phosphate release by castor polyurethane coatings. J. Agric. Food Chem. 65:5890-5. DOI: https://doi.org/10.1021/acs.jafc.7b01686

Dakora FD, Phillips DA. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35-47. DOI: https://doi.org/10.1023/A:1020809400075

Danaher M, Jordan K. 2013. Identification of existing and emerging chemical residue contamination concerns in milk. Irish J. Agr. Food Res. 52:173-83.

Dankers AC, Kuper CF, Boumeester AJ, Fabriek BO, Kooter IM, Gröllers‐Mulderij M, Peter Tromp P, Nelissen I, Zondervan‐Van Den Beuken EK, Vandebriel RJ. 2018. A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. J. Appl. Toxicol. 38:160-71. DOI: https://doi.org/10.1002/jat.3518

Delavaux CS, Smith‐Ramesh LM, Kuebbing SE. 2017. Beyond nutrients: a meta‐analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98:2111-9. DOI: https://doi.org/10.1002/ecy.1892

DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. 2010. Nanotechnology in fertilizers. Nat. Nanotechnol. 5:91. DOI: https://doi.org/10.1038/nnano.2010.2

Devassine M, Henry F, Guerin P, Briand X. 2002. Coating of fertilizers by degradable polymers. Int. J. Pharm. 242:399-404. DOI: https://doi.org/10.1016/S0378-5173(02)00225-9

Dewdar M, Abbas M, Hassanin A, Aleem H. 2018. Effect of nano micronutrients and nitrogen foliar applications on sugar beet (Beta vulgaris L.) of quantity and quality traits in marginal soils in Egypt. Int. J. Curr. Microbiol. Appl. Sci. 7:4490-8. DOI: https://doi.org/10.20546/ijcmas.2018.708.475

Diez JA, Caballero R, Bustos A, Roman R, Cartagena MC, Vallejo A. 1996. Control of nitrate pollution by application of controlled release fertilizer (CRF), compost and an optimized irrigation system. Fertil. Res. 43:191–5. DOI: https://doi.org/10.1007/BF00747701

Diez JA, Caballero R, Roman R, Tarquis A, Cartagena MC, Vallejo A. 2000. Integrated fertilizer and irrigation management to reduce nitrate leaching in Central Spain. J. Environ. Qual. 29:1539-47. DOI: https://doi.org/10.2134/jeq2000.00472425002900050021x

Dimkpa CO, Bindraban PS. 2017. Nanofertilizers: new products for the industry? J. Agric. Food Chem. 66:6462-73. DOI: https://doi.org/10.1021/acs.jafc.7b02150

Donida MW, Rocha SC. 2002. Coating of urea with an aqueous polymeric suspension in a two-dimensional spouted bed. Dry. Technol. 20:685-704. DOI: https://doi.org/10.1081/DRT-120002824

Drury CF, Reynolds WD, Yang XM, McLaughlin NB, Welacky TW, Calder W, Grant CA. 2012. Nitrogen source, application time, and tillage effects on soil nitrous oxide emissions and corn grain yields. Soil Sci. Soc. Am. J. 76:1268-79. DOI: https://doi.org/10.2136/sssaj2011.0249

El-Kereti MA, El-feky SA, Khater MS, Osman YA, El-sherbini EA. 2013. ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat. Food Nutr. Agric. 5:169-81. DOI: https://doi.org/10.2174/2212798405666131112142517

Erisman JW, Schaap M. 2004. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 129:159-63. DOI: https://doi.org/10.1016/j.envpol.2003.08.042

Etesami H, Emami S, Alikhani HA. 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - a review. J. Soil Sci. Plant Nutr. 17:897-911. DOI: https://doi.org/10.4067/S0718-95162017000400005

Feng C, Lü S, Gao C, Wang X, Xu X, Bai X, Gao N, Liu M, Wu L. 2015. ‘Smart’ fertilizer with temperature-and pH-responsive behaviour via surface-initiated polymerization for controlled release of nutrients. ACS Sustain. Chem. Eng. 3:3157-66. DOI: https://doi.org/10.1021/acssuschemeng.5b01384

Follmer C. 2008. Insights into the role and structure of plant ureases. Phytochemistry 69:18-28. DOI: https://doi.org/10.1016/j.phytochem.2007.06.034

Fu J, Wang C, Chen X, Huang Z, Chen D. 2018. Classification research and types of slow controlled release fertilizers (SRFs) used-a review. Commun. Soil Sci. Plant Anal. 49:2219-30. DOI: https://doi.org/10.1080/00103624.2018.1499757

Gaind S, Nain L. 2015. Soil–phosphorus mobilization potential of phytate mineralizing fungi. J. Plant Nutr. 38:2159-75. DOI: https://doi.org/10.1080/01904167.2015.1014561

Geiser M, Jeannet N, Fierz M, Burtscher H. 2017. Evaluating adverse effects of inhaled nanoparticles by realistic in vitro technology. Nanomaterials 7:49. DOI: https://doi.org/10.3390/nano7020049

Gil-Ortiz R, Naranjo MÁ, Ruiz-Navarro A, Atares S, García C, Zotarelli L, San Bautista A, Vicente O. 2020a. Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice. Plants 9:1183. DOI: https://doi.org/10.3390/plants9091183

Gil-Ortiz R, Naranjo MÁ, Ruiz-Navarro A, Caballero-Molada M, Atares S, García C, Vicente O. 2020b. New eco-friendly polymeric-coated urea fertilizers enhanced crop yield in wheat. Agronomy 10:438. DOI: https://doi.org/10.3390/agronomy10030438

Giroto AS, Fidélis SC, Ribeiro C. 2015. Controlled release from hydroxyapatite nanoparticles incorporated into biodegradable, soluble host matrixes. RSC Adv. 5:104179-86. DOI: https://doi.org/10.1039/C5RA17669G

Giroto AS, Guimarães GGF, Ribeiro C. 2018. A novel, simple route to produce urea: urea–formaldehyde composites for controlled release of fertilizers. J. Polym. Environ. 26:2448-58. DOI: https://doi.org/10.1007/s10924-017-1141-z

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812–8 DOI: https://doi.org/10.1126/science.1185383

Golden BR, Slaton NA, Norman RJ, Wilson CE, DeLong RE. 2009. Evaluation of polymer‐coated urea for direct‐seeded, delayed‐flood rice production. Soil Sci. Soc. Am. J. 73:375-83. DOI: https://doi.org/10.2136/sssaj2008.0171

Gomiero T. 2016. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 8:281. DOI: https://doi.org/10.3390/su8030281

Gontia-Mishra I, Sapre S, Tiwari S. 2017. Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185-90. DOI: https://doi.org/10.1016/j.rhisph.2017.04.013

Goswami M, Suresh DEKA. 2020. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere 30:40-61. DOI: https://doi.org/10.1016/S1002-0160(19)60839-8

Gough EC, Owen KJ, Zwart RS, Thompson JP. 2020. A systematic review of the effects of arbuscular mycorrhizal fungi on root-lesion nematodes, Pratylenchus spp. Front. Plant Sci. 11:923. DOI: https://doi.org/10.3389/fpls.2020.00923

Gray EJ, Smith DL. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signalling processes. Soil Biol. Biochem. 37:395-412. DOI: https://doi.org/10.1016/j.soilbio.2004.08.030

Guardia G, Cangani MT, Andreu G, Sanz-Cobena A, García-Marco S, Álvarez JM, Recio-Huetos J, Vallejo A. 2017. Effect of inhibitors and fertigation strategies on GHG emissions, NO fluxes and yield in irrigated maize. Field Crops Res. 204:135-45. DOI: https://doi.org/10.1016/j.fcr.2017.01.009

Guardia G, Marsden KA, Vallejo A, Jones DL, Chadwick DR. 2018. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Sci. Total Environ. 624:1202-12. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.250

Guimarães GG, Mulvaney RL, Khan SA, Cantarutti RB, Silva AM. 2018. Comparison of urease inhibitor N‐(n‐butyl) thiophosphoric triamide and oxidized charcoal for conserving urea‐N in soil. J. Soil Sci. Plant Nutr. 179:520-8. DOI: https://doi.org/10.1002/jpln.201500622

Guo YP, Wang HJ, Guo YJ, Guo LH, Chu LF, Guo CX. 2011. Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem. Eng. J 166:391-400. DOI: https://doi.org/10.1016/j.cej.2010.10.057

Haderlein L, Jensen TL, Dowbenko RE, Blaylock AD. 2001. Controlled release urea as a nitrogen source for spring wheat in western Canada: Yield, grain N content, and N use efficiency. Sci. World J. 1:114-21. DOI: https://doi.org/10.1100/tsw.2001.309

Halvorson AD, Del Grosso SJ, Stewart CE. 2016. Manure and inorganic nitrogen affect trace gas emissions under semi‐arid irrigated corn. J. Environ. Qual. 45:906-14. DOI: https://doi.org/10.2134/jeq2015.08.0426

Halvorson AD, Del Grosso SJ. 2013. Nitrogen placement and source effects on nitrous oxide emissions and yields of irrigated corn. J. Environ. Qual. 42:312-22. DOI: https://doi.org/10.2134/jeq2012.0315

Han Y, Chen S, Yang M, Zou H, Zhang Y. 2020. Inorganic matter modified water-based copolymer prepared by chitosan-starch-CMC-Na-PVAL as an environment-friendly coating material. Carbohydr. Polym. 234:115925. DOI: https://doi.org/10.1016/j.carbpol.2020.115925

Harder Nielsen T, Bonde TA, Sørensen J. 1998. Significance of microbial urea turnover in N cycling of three Danish agricultural soils. FEMS Microbiol. Ecol. 25:147-57. DOI: https://doi.org/10.1111/j.1574-6941.1998.tb00468.x

Harman GE. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis. 84:377-93. DOI: https://doi.org/10.1094/PDIS.2000.84.4.377

Henke CR. 2000. Making a place for science: The field trial. Soc. Stud. Sci. 30:483-511. DOI: https://doi.org/10.1177/030631200030004001

Hergert GR, Ferguson C, Wortmann C, Shapiro C, Shaver T. 2011. Enhanced efficiency fertilizers: will they enhance my fertilizer efficiency. Proceedings of the 3rd Annual Crop Production Clinics, University of Nebraska-Lincoln Extension, United States.

Hoefler R, González-Barrios P, Bhatta M, Nunes JAR, Berro I, Nalin RS, Borges A, Covarrubias E, Diaz-Garcia L, Quincke M, Gutierrez L. 2020. Do spatial designs outperform classic experimental designs? J. Agric. Biol. Environ. Stat. 25:523-52. DOI: https://doi.org/10.1007/s13253-020-00406-2

Hou P, Li G, Wang S, Jin X, Yang Y, Chen X, Ding C, Liu Z, Ding Y. 2013. Methane emissions from rice fields under continuous straw return in the middle-lower reaches of the Yangtze River. J. Environ. Sci. 25:1874-81. DOI: https://doi.org/10.1016/S1001-0742(12)60273-3

Hric P, Jančovič J, Kovár P, Vozár Ľ. 2016. The effect of varying speed release of nutrients from fertilizers on growth-production process of turf. Acta Univ. Agric. Silvic. Mendel. Brun. 64:441-7. DOI: https://doi.org/10.11118/actaun201664020441

Hu F, Zhao C, Feng F, Chai Q, Mu Y, Zhang Y. 2017. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil 412:235-51. DOI: https://doi.org/10.1007/s11104-016-3063-2

Hu XK, Su F, Ju XT, Gao B, Oenema O, Christie P, Huang BX, Jiang RF, Zhang FS. 2013. Greenhouse gas emissions from a wheat–maize double cropping system with different nitrogen fertilization regimes. Environ. Pollut. 176:198-207. DOI: https://doi.org/10.1016/j.envpol.2013.01.040

Hummel Jr NW, Waddington DV. 1984. Sulfur‐coated urea for turfgrass fertilization. Soil Sci. Soc. Am. J. 48:191-5. DOI: https://doi.org/10.2136/sssaj1984.03615995004800010035x

Ibrahim KA, Naz MY, Shukrullah S, Sulaiman SA, Ghaffar A, AbdEl-Salam NM. 2020. Nitrogen pollution impact and remediation through low cost starch based biodegradable polymers. Sci. Rep. 10: 5927. DOI: https://doi.org/10.1038/s41598-020-62793-3

Irfan SA, Razali R, KuShaari K, Mansor N, Azeem B, Versypt ANF. 2018. A review of mathematical modeling and simulation of controlled-release fertilizers. J. Control. Release 271:45-54. DOI: https://doi.org/10.1016/j.jconrel.2017.12.017

Jahangirian H, Rafiee-Moghaddam R, Jahangirian N, Nikpey B, Jahangirian S, Bassous N, Saleh B, Kalantari K, Webster TJ. 2020. Green synthesis of zeolite/Fe2O3 nanocomposites: toxicity & cell proliferation assays and application as a smart iron nanofertilizer. International Journal of Nanomedicine, 15:1005-20. DOI: https://doi.org/10.2147/IJN.S231679

Jang JR, Hong EM, Song I, Kang MS, Cho JY, Cho YK. 2016. Impact of Different Fertilizer Types on Nutrient Pollutant Loads from Rice Paddy Fields in South Korea. Irrig. Drain. 65:105-11. DOI: https://doi.org/10.1002/ird.2041

Jarosiewicz A, Tomaszewska M. 2003. Controlled-release NPK fertilizer encapsulated by polymeric membranes. J. Agric. Food Chem. 51:413-7. DOI: https://doi.org/10.1021/jf020800o

Jha Y. 2017. Potassium mobilizing bacteria: enhance potassium intake in paddy to regulates membrane permeability and accumulate carbohydrates under salinity stress. Braz. J. Biol. Sci. 4:333-44. DOI: https://doi.org/10.21472/bjbs.040812

Ji Y, Liu G, Ma J, Zhang G, Xu H, Yagi K. 2013. Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: a multi-year field observation. Plant Soil 371:473-86. DOI: https://doi.org/10.1007/s11104-013-1700-6

Jiao X, Liang W, Chen L, Zhang H, Li Q, Wang P, Wen D. 2005. Effects of slow-release urea fertilizers on urease activity, microbial biomass, and nematode communities in an aquic brown soil. Sci. China Life Sci. 48:26. DOI: https://doi.org/10.1007/BF02889798

Kabala C, Karczewska A, Gałka B, Cuske M, Sowiński J. 2017. Seasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cups. Environ. Monit. Assess. 189:304. DOI: https://doi.org/10.1007/s10661-017-6022-3

Kah M, Kookana RS, Gogos A, Bucheli TD. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13:677-84. DOI: https://doi.org/10.1038/s41565-018-0131-1

Kalia A, Sharma SP, Kaur H. 2019. Nanoscale fertilizers: harnessing boons for enhanced nutrient use efficiency and crop productivity. In: K.A. Abd-Elsalam, R. Prasad, (eds.) Nanobiotechnology Applications in Plant Protection. Springer, Cham, Switzerland, pp 191-208. DOI: https://doi.org/10.1007/978-3-030-13296-5_10

Khan MS, Zaidi A, Wani PA. 2009. Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron. Sustain. Dev. 27:29-43. DOI: https://doi.org/10.1051/agro:2006011

Kandil EE, Abdelsalam NR, Aziz AAAE, Ali HM, Siddiqui MH. 2020. Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. Sugar Tech 22:782–91. DOI: https://doi.org/10.1007/s12355-020-00837-8

Kang SM, Waqas M, Shahzad R, You YH, Asaf S, Khan MA, Lee KE, Joo GJ, Kim SJ, Lee IJ. 2017. Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). J. Soil Sci. Plant Nutr. 63:233-41. DOI: https://doi.org/10.1080/00380768.2017.1314829

Kiss S, Simihăian M. 2002. Effect of soil urease inhibitors on germination, growth, and yield of plants. In: S. Kiss, M. Simihăian (eds.) Improving efficiency of urea fertilizers by inhibition of soil urease activity. Springer, Dordrecht, pp 251-319. DOI: https://doi.org/10.1007/978-94-017-1843-1_8

Klaic R, Giroto AS, Guimarães GG, Plotegher F, Ribeiro C, Zangirolami TC, Farinas CS. 2018. Nanocomposite of starch-phosphate rock bioactivated for environmentally-friendly fertilization. Miner. Eng. 128:230-7. DOI: https://doi.org/10.1016/j.mineng.2018.09.002

Kloepper JW, Schroth MN. 1978. Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Gilbert-Clarey, Tours, France, pp. 879–82.

Knight EC, Guertal EA, Wood CW. 2007. Mowing and nitrogen source effects on ammonia volatilization from turfgrass. Crop Sci. 47:1628-34. DOI: https://doi.org/10.2135/cropsci2006.09.0608

Knijnenburg JT, Hilty FM, Oelofse J, Buitendag R, Zimmermann MB, Cakmak I, Grobler AF. 2018. Nano- and Pheroid technologies for development of foliar iron fertilizers and iron biofortification of soybean grown in South Africa. Chem. Biol. Technol. Agric. 5:26. DOI: https://doi.org/10.1186/s40538-018-0138-8

Kudoyarova GR, Vysotskaya LB, Arkhipova TN, Kuzmina LY, Galimsyanova NF, Sidorova LV, Gabbasova IM, Melentiev AI, Veselov SY. 2017. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol. Plant. 39:253. DOI: https://doi.org/10.1007/s11738-017-2556-9

Kumar D, Devakumar C, Kumar R, Das A, Panneerselvam P, Shivay YS. 2010. Effect of neem-oil coated prilled urea with varying thickness of neem-oil coating and nitrogen rates on productivity and nitrogen-use efficiency of lowland irrigated rice under Indo-Gangetic plains. J. Plant Nutr. 33:1939-59. DOI: https://doi.org/10.1080/01904167.2010.512053

Kumar M, Bauddh K, Sainger M, Sainger PA, Singh RP. 2015. Enhancing efficacy of Azotobactor and Bacillus by entrapping in organic matrix for rice cultivation. Agroecol. Sustain. Food Syst. 39:907-23. DOI: https://doi.org/10.1080/21683565.2015.1050146

Kumar S, Bauddh K, Barman SC, Singh RP. 2014. Organic matrix entrapped bio-fertilizers increase growth, productivity, and yield of Triticum aestivum L. and transport of NO3–, NO2–, NH4+ and PO4–3 from soil to plant leaves. J. Agr. Sci. Tech. 16:315-29.

Kumar V. 2014. Characterization, bio-formulation development and shelf-life studies of locally isolated bio-fertilizer strains. Oct. Jour. Env. Res. 2:32-37.

Latef AAHA, Hashem A, Rasool S, Abd Allah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA Ahmad P. 2016. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J. Plant Biol. 59:407-26. DOI: https://doi.org/10.1007/s12374-016-0237-7

Lemaire G, Ciampitti I. 2020. Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: a review. Plants 9:1309. DOI: https://doi.org/10.3390/plants9101309

León-Silva S, Arrieta-Cortes R, Fernández-Luqueño F, López-Valdez F. 2018. Design and production of nanofertilizers. In: F. López-Valdez, F. Fernández-Luqueño (eds.) Agricultural Nanobiotechnology. Springer, Cham, Switzerland, pp 17-31. DOI: https://doi.org/10.1007/978-3-319-96719-6_2

Li M, Yang JT, Yan LY, Shi Y. 2014. The effects of different amounts of controlled release fertilizer on the root growth and the filling rate in winter wheat. Adv. J. Food Sci. Technol. 6:358-61. DOI: https://doi.org/10.19026/ajfst.6.36

Li P, Lu J, Hou W, Pan Y, Wang Y, Khan MR, Ren T, Cong R, Li, X. 2017. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea. Environ. Sci. Pollut. Res. 24:11722-33. DOI: https://doi.org/10.1007/s11356-017-8825-8

Li Z, Liu Z, Zhang M, Li C, Li YC, Wan Y, Martin CG. 2020. Long-term effects of controlled-release potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. Soil Till. Res. 196:104438. DOI: https://doi.org/10.1016/j.still.2019.104438

Lin D, Xing B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150:243-50. DOI: https://doi.org/10.1016/j.envpol.2007.01.016

Liu CH, Wu JY, Chang JS. 2008. Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. Bioresour. Technol. 99:1904-10. DOI: https://doi.org/10.1016/j.biortech.2007.03.029

Liu G, Zotarelli L, Li Y, Dinkins D, Wang Q, Ozores-Hampton M. 2014. Controlled-release and slow-release fertilizers as nutrient management tools. USA: US Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS.

Liu R, Lal R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514:131-9. DOI: https://doi.org/10.1016/j.scitotenv.2015.01.104

Liu X, Chen L, Hua Z, Mei S, Wang P, Wang S. 2020. Comparing ammonia volatilization between conventional and slow-release nitrogen fertilizers in paddy fields in the Taihu Lake region. Environ. Sci. Pollut. Res. 27:8386-94. DOI: https://doi.org/10.1007/s11356-019-07536-2

Lu P, Zhang M, Li C, Liu Z. 2012. Effect of acid-modified clay on the microstructure and performance of starch films. Polym. Plast. Technol. Eng. 51:1340-5. DOI: https://doi.org/10.1080/03602559.2012.702252

Lü S, Feng C, Gao C, Wang X, Xu X, Bai X, Gao N, Liu M. 2016. Multifunctional environmental smart fertilizer based on L-aspartic acid for sustained nutrient release. J. Agr. Food Chem. 64:4965-74. DOI: https://doi.org/10.1021/acs.jafc.6b01133

Ma Y. 2019. Seed coating with beneficial microorganisms for precision agriculture. Biotechnol. Adv. 37:107423. DOI: https://doi.org/10.1016/j.biotechadv.2019.107423

Mącik M, Gryta A, Frąc M. 2020. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv. Agron. 162:31-87. DOI: https://doi.org/10.1016/bs.agron.2020.02.001

Maheshwari DK, Dubey RC, Agarwal M, Dheeman S, Aeron A, Bajpai VK. 2015. Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol. Eng. 81:2727. DOI: https://doi.org/10.1016/j.ecoleng.2015.04.066

Majeed Z, Ramli NK, Mansor N, Man Z. 2015. A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. Rev. Chem. Eng. 31:69-95. DOI: https://doi.org/10.1515/revce-2014-0021

Malusá E, Sas-Paszt L, Ciesielska J. 2012. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. 2012:491206 DOI: https://doi.org/10.1100/2012/491206

Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, Sonah H, Deshmukh R. 2020. Significance of silicon uptake, transport, and deposition in plants. J. Exp. Bot. 71:6703-18. DOI: https://doi.org/10.1093/jxb/eraa301

Marchiol L. 2019. Nanofertilisers. An outlook of crop nutrition in the fourth agricultural revolution. Ital. J. Agron. 14:183-90. DOI: https://doi.org/10.4081/ija.2019.1367

Master Y, Laughlin RJ, Shavit U, Stevens RJ, Shaviv A. 2003. Gaseous nitrogen emissions and mineral nitrogen transformations as affected by reclaimed effluent application. J. Environ. Qual. 32:1204-11. DOI: https://doi.org/10.2134/jeq2003.1204

Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC. 2015. Strategic role of nanotechnology in fertilizers: potential and limitations. In: M. Rai, C. Ribeiro, L. Mattoso, N. Duran (eds.) Nanotechnologies in food and agriculture. Springer, Switzerland, Cham, pp 25-67. DOI: https://doi.org/10.1007/978-3-319-14024-7_2

Mehmood U, Inam-ul-Haq M, Saeed M, Altaf A, Azam F, Hayat S. 2018. A brief review on plant growth promoting rhizobacteria (PGPR): a key role in plant growth promotion. Plant Prot. 2:77-82.

Melia PM, Cundy AB, Sohi SP, Hooda PS, Busquets R. 2017. Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere 186:381-95. DOI: https://doi.org/10.1016/j.chemosphere.2017.07.089

Menéndez S, Barrena I, Setien I, González-Murua C, Estavillo JM. 2012. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol. Biochem. 53:82-9. DOI: https://doi.org/10.1016/j.soilbio.2012.04.026

Menezes-Blackburn D, Jorquera M, Gianfreda L, Rao M, Greiner R, Garrido E, Mora ML. 2011. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays. Bioresour. Technol. 102:9360-7. DOI: https://doi.org/10.1016/j.biortech.2011.07.054

Menezes-Blackburn D, Jorquera MA, Gianfreda L, Greiner R, de la Luz Mora M. 2014. A novel phosphorus biofertilization strategy using cattle manure treated with phytase–nanoclay complexes. Biol. Fertil. Soils 50:583-92. DOI: https://doi.org/10.1007/s00374-013-0872-9

Mérigout P, Lelandais M, Bitton F, Renou J-P, Briand X, Meyer C, Daniel-Vedele F. 2008. Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol. 147:1225-38. DOI: https://doi.org/10.1104/pp.108.119339

Mesias VSD, Agu ABS, Benablo PJL, Chen CH, Penaloza Jr DP. 2019. Coated NPK fertilizer based on citric acid-crosslinked chitosan/alginate encapsulant. J. Ecol. Eng. 20:1-12. DOI: https://doi.org/10.12911/22998993/113418

Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA. 2007. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Mijwel AK, Jassim HM. 2018. Effect of organic remnants compost and bioactiv fertilizer on growth and yield of potato. Plant Arch. 18:2389-97.

Mira AB, Cantarella H, Souza-Netto GJM, Moreira LA, Kamogawa MY, Otto R. 2017. Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric. Ecosyst. Environ. 248:105-12. DOI: https://doi.org/10.1016/j.agee.2017.07.032

Modolo LV, da-Silva CJ, Brandão DS, Chaves IS. 2018. A mini review on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J. Adv. Res. 13:29-37. DOI: https://doi.org/10.1016/j.jare.2018.04.001

Modolo LV, de Souza AX, Horta LP, Araujo DP, de Fatima A. 2015. An overview on the potential of natural products as ureases inhibitors: A review. J. Adv. Res. 6:35-44. DOI: https://doi.org/10.1016/j.jare.2014.09.001

Mohammad Ghasemi V, Siavash Moghaddam S, Rahimi A, Pourakbar L, Popović-Djordjević J. 2020. Winter cultivation and nano fertilizers improve yield components and antioxidant traits of Dragon’s Head (Lallemantia iberica (MB) Fischer & Meyer). Plants 9:252. DOI: https://doi.org/10.3390/plants9020252

Mohanty S, Swain CK, Sethi SK, Dalai PC, Bhattachrayya P, Kumar A, Tripathi R, Shahid M, Panda BB, Kumar U, Lal B, Gautam P, Munda S, Nayak AK 2017. Crop establishment and nitrogen management affect greenhouse gas emission and biological activity in tropical rice production. Ecol. Eng. 104:80-98. DOI: https://doi.org/10.1016/j.ecoleng.2017.03.014

Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C. 2016.Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils 52:423-37. DOI: https://doi.org/10.1007/s00374-015-1073-5

Nash P, Nelson K, Motavalli P. 2015. Reducing nitrogen loss with managed drainage and polymer‐coated urea. J. Environ. Qual. 44:256-64. DOI: https://doi.org/10.2134/jeq2014.05.0238

Nassal D, Spohn M, Eltlbany N, Jacquiod S, Smalla K, Marhan S, Kandeler E. 2018. Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant Soil 427:17-37. DOI: https://doi.org/10.1007/s11104-017-3528-y

Naz MY, Sulaiman SA. 2016. Slow release coating remedy for nitrogen loss from conventional urea: a review. J. Control. Release 225:109-20. DOI: https://doi.org/10.1016/j.jconrel.2016.01.037

Nazari M, Smith DL. 2020. A PGPR-Produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications. Front Plant Sci. 11:916. DOI: https://doi.org/10.3389/fpls.2020.00916

Nisar S, Shehzad MR, Rafiq M, Kousar S, Abdul H. 2017. Production of clay polymers for fertilizer coating. Int. J. Chem. Biochem. Sci. 12:122-9.

Nogueira V, Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F, Gonçalves F, Soares AMVM, Cunha A, Almeida A, Gomes NNCM, Pereira R. 2012. Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci. Total Environ. 424:344-50 DOI: https://doi.org/10.1016/j.scitotenv.2012.02.041

Norton JM, Ouyang Y. 2019. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 10:1931. DOI: https://doi.org/10.3389/fmicb.2019.01931

Pahl-Wostl C. 2009. A conceptual framework for analysing adaptive capacity and multi-level learningprocesses in resource governance regimes. Glob. Environ. Change19:354-65 DOI: https://doi.org/10.1016/j.gloenvcha.2009.06.001

Pampana S, Masoni A, Mariotti M, Ercoli L, Arduini I. 2018. Nitrogen fixation of grain legumes differs in response to nitrogen fertilisation. Exp. Agric. 54:66. DOI: https://doi.org/10.1017/S0014479716000685

Parihar M, Rakshit A., Meena VS, Gupta VK, Rana K, Choudhary M., Tiwari G, Mishra PK, Pattanayak A, Bisht JK, Jatav SS, Khati P., Jatav HS. 2020. The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch. Microbiol. 202:1581-96. DOI: https://doi.org/10.1007/s00203-020-01915-x

Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:763-75. DOI: https://doi.org/10.1038/nrmicro1987

Pohshna C, Mailapalli DR, Laha T. 2020. Synthesis of Nanofertilizers by Planetary Ball Milling. In: E. Lichtfouse (ed.) Sustainable agriculture reviews. Springer, Cham, Switzerland, pp 75-112. DOI: https://doi.org/10.1007/978-3-030-33281-5_3

Pollock KM. 1988. Grass establishment and performance on a high country soil fertilised with nitrogen. New Zealand J. Agric. Res. 32:7-15. DOI: https://doi.org/10.1080/00288233.1989.10423471

Porcel R, Aroca R, Ruiz-Lozano JM. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 32:181-200. DOI: https://doi.org/10.1007/s13593-011-0029-x

Prasad R, Pandey R, Barman I. 2016. Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed. Nanobiotechnol. 8:316-30. DOI: https://doi.org/10.1002/wnan.1363

Premanandh J. 2011. Factors affecting food security and contribution of modern technologies in food sustainability. J. Sci. Food Agric. 91:2707-14. DOI: https://doi.org/10.1002/jsfa.4666

Pulat M, Yoltay N. 2016. Smart fertilizers: preparation and characterization of gelatin-based hydrogels for controlled release of MAP and AN fertilizers. Agrochimica 60:249-61.

Qiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y. 2017. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 17:131. DOI: https://doi.org/10.1186/s12866-017-1039-x

Rai A, Kumar S, Bauddh K, Singh N, Singh RP. 2017. Improvement in growth and alkaloid content of Rauwolfia serpentina on application of organic matrix entrapped biofertilizers (Azotobacter chroococcum, Azospirillum brasilense and Pseudomonas putida). J. Plant Nutr. 40:2237-47. DOI: https://doi.org/10.1080/01904167.2016.1222419

Rajan M, Shahena S, Chandran V, Mathew L. 2021. Controlled release of fertilizers—concept, reality, and mechanism. In: F.B. Lewu, T. Volova, S. Thomas, K.R. Rakhimol (eds.) Controlled release fertilizers for sustainable agriculture. Academic Press, pp 41-56. DOI: https://doi.org/10.1016/B978-0-12-819555-0.00003-0

Raliya R, Saharan V, Dimkpa C, Biswas P. 2017. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J. Agric. Food Chem. 66:6487-503. DOI: https://doi.org/10.1021/acs.jafc.7b02178

Ramesh A, Sharma SK, Joshi OP, Khan IR. 2011. Phytase, phosphatase activity and P-nutrition of soybean as influenced by inoculation of Bacillus. Indian J. Microbiol. 51:94-9. DOI: https://doi.org/10.1007/s12088-011-0104-7

Ramli RA. 2019. Slow release fertilizer hydrogels: a review. Polym. Chem. 10:6073-90. DOI: https://doi.org/10.1039/C9PY01036J

Rao JK, Thompson JA, Sastry PVSS, Giller KE, Day JM. 1987. Measurement of N2-fixation in field-grown pigeonpea [Cajanus cajan (L.) Millsp.] using 15N-labelled fertilizer. Plant Soil 101:107-13. DOI: https://doi.org/10.1007/BF02371037

Rawluk CDL, Grant CA, Racz GJ. 2001. Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT. Can. J. Soil Sci. 81:239-46. DOI: https://doi.org/10.4141/S00-052

Real-Guerra R, Stanisçuaski F, Carlini CR. 2013. Soybean urease: over a hundred years of knowledge. In: J.E. Board (ed.), A comprehensive survey of international soybean research – Genetics, physiology, agronomy and nitrogen relationships, InTech, Croatia, pp 317-40. DOI: https://doi.org/10.5772/52106

Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ. 2012. Global agriculture and nitrous oxide emissions. Nat Clim Change 2:410–6 DOI: https://doi.org/10.1038/nclimate1458

Rindt DW, Blouin GM, Getsinger JG. 1968. Sulfur coating on nitrogen fertilizer to reduce dissolution rate. J. Agric. Food Chem. 16:773-8. DOI: https://doi.org/10.1021/jf60159a015

Robbins J. 2005. Slow-release fertilizers as tools. IFA International Workshop on Enhanced-Efficiency Fertilizers. Frankfurt, Germany, 28–39 June 2005.

Rodrigues JM, Lasa B, Aparicio-Tejo PM, González-Murua C, Marino D. 2018. 3, 4-Dimethylpyrazole phosphate and 2-(N-3, 4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors: quantification in plant tissues and toxicity assays. Sci. Total Environ. 624:1180-6. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.241

Saber WIA, Ghanem KM, El-Hersh MS. 2009. Rock phosphate solubilization by two isolates of Aspergillus niger and Penicillium sp. and their promotion to mung bean plants. Res. J. Microbiol. 4:235-50. DOI: https://doi.org/10.3923/jm.2009.235.250

Sahai P, Sinha VB, Dutta R. 2019. Bioformulation and nanotechnology in pesticide and fertilizer delivery system for eco-friendly agriculture: a review. Sci. Agric. 3:2-10. DOI: https://doi.org/10.31080/ASAG.2019.03.0675

Saleh K, Steinmetz D, Hemati M. 2003. Experimental study and modeling of fluidized bed coating and agglomeration. Powder Technol. 130:116-23. DOI: https://doi.org/10.1016/S0032-5910(02)00254-1

Sanderson KR, Fillmore SAE. 2012. Slow-release nitrogen fertilizer in carrot production on Prince Edward Island. Can. J. Plant Sci. 92:1223-8. DOI: https://doi.org/10.4141/cjps2011-201

Santi LP, Goenadi DH. 2017. Solubilization of silicatefrom quartz mineral by potential silicate solubilizing bacteria. Menara Perkebunan 85:95-104. DOI: https://doi.org/10.22302/iribb.jur.mp.v85i2.247

Saranya K, Krishnan PS, Kumutha K, French J. 2011. Potential for biochar as an alternate carrier to lignite for the preparation of biofertilizers in India. Int. J. Agric. Environ. Biotechnol. 4:167-72.

Sarkar S, Datta SC, Biswas DR. 2014. Synthesis and characterization of nanoclay–polymer composites from soil clay with respect to their water‐holding capacities and nutrient‐release behaviour. J. Appl. Polym. Sci. 131:39951. DOI: https://doi.org/10.1002/app.39951

Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, Meena VS, Farooq M, Singh R, Rahman M, Meena HN. 2019. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Appl. Soil Ecol. 133:146-59. DOI: https://doi.org/10.1016/j.apsoil.2018.09.012

Schneider KD, Van Straaten P, De Orduña RM, Glasauer S, Trevors J, Fallow D, Smith PS. 2010. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks. J. Appl. Microbiol. 108:366-74. DOI: https://doi.org/10.1111/j.1365-2672.2009.04489.x

Scott N, Chen H. 2013. Nanoscale science and engineering for agriculture and food systems. Ind. Biotechnol. 9:17-8. DOI: https://doi.org/10.1089/ind.2013.1555

Senna AM, Botaro VR. 2017. Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil. J. Control. Release 260:194-201. DOI: https://doi.org/10.1016/j.jconrel.2017.06.009

Shan L, He Y, Chen J, Huang Q, Lian X, Wang H, Liu Y. 2015b. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Agric. Water Manag. 159:255-63. DOI: https://doi.org/10.1016/j.agwat.2015.06.008

Shan L, He Y, Chen J, Huang Q, Wang H. 2015a. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. 38:14-23. DOI: https://doi.org/10.1016/j.jes.2015.04.028

Shaviv A, Mikkelsen RL. 1993. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation-A review. Fert. Res. 35:1-12. DOI: https://doi.org/10.1007/BF00750215

Shaviv A, Raban S, Zaidel E. 2001. Modeling controlled nutrient release from polymer coated fertilizers: Diffusion release from single granules. Environ. Sci. Technol. 37:2251-6. DOI: https://doi.org/10.1021/es011462v

Shaviv A. 2000. Advances in controlled release fertilizers. Adv. Agron. 71:1-49. DOI: https://doi.org/10.1016/S0065-2113(01)71011-5

Shen Y, Zhou J, Du C. 2019. Development of a polyacrylate/silica nanoparticle hybrid emulsion for delaying nutrient release in coated controlled-release urea. Coatings 9:88. DOI: https://doi.org/10.3390/coatings9020088

Shi N, Zhang Y, Li Y, Luo J, Gao X, Jing Y, Bo L. 2018. Water pollution risk from nitrate migration in the soil profile as affected by fertilization in a wheat-maize rotation system. Agric. Water Manag. 210:124-9. DOI: https://doi.org/10.1016/j.agwat.2018.08.006

Shitole AV, Gade RM, Bandgar MS, Wavare SH, Belkar YK. 2014. Utilization of spent mushroom substrate as carrier for biocontrol agent and biofertilizer. Bioscan 9:271-5.

Shoji S. 2005. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation. Sci. China Life Sci. 48:912-20.

Shrivastava M, Srivastava PC, D’Souza SF. 2018. Phosphate-solubilizing microbes: diversity and phosphates solubilization mechanism. In: V. Meena (ed.) Role of rhizospheric microbes in soil. Springer, Singapore pp 137-165. DOI: https://doi.org/10.1007/978-981-13-0044-8_5

Silva AG, Sequeira CH, Sermarini RA., Otto R. 2017. Urease inhibitor NBPT on ammonia volatilization and crop productivity: A meta‐analysis. Agron. J. 109:1-13. DOI: https://doi.org/10.2134/agronj2016.04.0200

Singh B, Satyanarayana T. 2012. Plant growth promotion by phytases and phytase-producing microbes due to amelioration in phosphorus availability. In: T. Satyanarayana, B.N. Johri, A. Prakash (eds.) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht pp 3-15. DOI: https://doi.org/10.1007/978-94-007-2214-9_1

Sivasakthi S, Usharani G, Saranraj P. 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. Afr. J. Agric. Res. 9:1265-77.

Sofo A, Scopa A, Manfra M, De Nisco M, Tenore G, Troisi J, Di Fiori R, Novellino E. 2011. Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus × P. canescens). Plant Growth Regul. 65:421-5. DOI: https://doi.org/10.1007/s10725-011-9610-1

Souza CF, Faez R, Bacalhau FB, Bacarin MF, Pereira TS. 2017. In situ monitoring of a controlled release of fertilizers in lettuce crop. Eng. Agríc. 37:656-64. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v37n4p656-664/2017

Steiner C, Garcia M, Zech W. 2009 Effects of charcoal as slow release nutrient carrier on n-p-k dynamics and soil microbial population: pot experiments with ferralsol substrate. In: W.I. Woods, W.G. Teixeira, J. Lehmann, C. Steiner, A. WinklerPrins, L. Rebellato (eds.) Amazonian Dark Earths: Wim Sombroek’s Vision. Springer, Berlin, pp 325-38. DOI: https://doi.org/10.1007/978-1-4020-9031-8_17

Suganya A, Saravanan A, Manivannan N. 2020. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Sci. Plant Anal. 51:2001-21. DOI: https://doi.org/10.1080/00103624.2020.1820030

Sun H, Zhang H, Min J, Feng Y, Shi W. 2016. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy Water Environ. 14:105-11. DOI: https://doi.org/10.1007/s10333-015-0482-2

Sun H, Zhou S, Zhang J, Zhang X, Wang C. 2020. Year-to-year climate variability affects methane emission from paddy fields under irrigated conditions. Environ. Sci. Pollut. Res. 27:14780–9. DOI: https://doi.org/10.1007/s11356-020-07951-w

Surendhiran D, Cui H, Lin L. 2020. Mode of transfer, toxicity and negative impacts of engineered nanoparticles on environment, human and animal health. In: C.M. Hussain (ed.) The ELSI handbook of nanotechnology, pp 165-204. DOI: https://doi.org/10.1002/9781119592990.ch9

Suresh BG, Kumari S, Singh AK, Singla A, Paul A, Masih S, Masih H. 2018. Bio-formulation of halotolerant phosphate solubilizing Enterobacter cloacae HFZ-H4 strain to screen different carrier materials and their shelf life Study. Int. J. Curr. Microbiol. App. Sci 7:2373-80. DOI: https://doi.org/10.20546/ijcmas.2018.701.285

Taghizadeh Y, Jalilian J, Moghaddam SS. 2019. Do Fertilizers and Irrigation Disruption Change Some Physiological Traits of Safflower? J. Plant Growth Regul. 38:1439-48. DOI: https://doi.org/10.1007/s00344-019-09946-5

Taimooz SH. 2018. Behavior of some nanomaterials in improving the growth of onion plant, Allium cepa and its effect on Pythium aphanidermatum. Plant Arch. 18:857-62.

Tao S, Liu J, Jin K, Qiu X, Zhang Y, Ren X, Hu S. 2011. Preparation and characterization of triple polymer‐coated controlled‐release urea with water‐retention property and enhanced durability. J. Appl. Polym. Sci. 120:2103-11. DOI: https://doi.org/10.1002/app.33366

Tewari S, Sharma S. 2020. Rhizobial exopolysaccharides as supplement for enhancing nodulation and growth attributes of Cajanus cajan under multi-stress conditions: A study from lab to field. Soil Till. Res. 198:104545. DOI: https://doi.org/10.1016/j.still.2019.104545

Thompson H. 2012. Food science deserves a place at the table – US agricultural research chief aims to raise the profile of farming and nutrition science. Nature, Available online: https://www.nature.com/news/food-science-deserves-a-place-at-the-table-1.10963 (accessed on 23 Novembre 2020). DOI: https://doi.org/10.1038/nature.2012.10963

Tilman D, Socolow, R, Foley, J A, Hill, J, Larson, E, Lynd, L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. 2009. Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270-1. DOI: https://doi.org/10.1126/science.1177970

Timilsena YP, Adhikari R, Casey P, Muster T, Gill H, Adhikari B. 2015. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J. Sci. Food Agric. 95:1131-42. DOI: https://doi.org/10.1002/jsfa.6812

Treinyte J, Grazuleviciene V, Paleckiene R, Ostrauskaite J, Cesoniene L. 2018. Biodegradable polymer composites as coating materials for granular fertilizers. J. Polym. Environ. 26:543-54. DOI: https://doi.org/10.1007/s10924-017-0973-x

Trenkel ME. 1997. Controlled-release and stabilized fertilizers in agriculture. Paris: International Fertilizer Industry Association.

Trenkel ME. 2010. Slow-and controlled-release and stabilized fertilizers: An option for enhancing nutrient use efficiency in agriculture in agriculture. Paris: International Fertilizer Industry Association (IFA).

Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573. DOI: https://doi.org/10.3390/molecules21050573

Vempati RK, Hegde RS, Sloan JJ. 2011. U.S. Patent No. 8,034,147. Washington, DC: U.S. Patent and Trademark Office.

Vidyalakshmi R, Paranthaman R, Bhakyaraj R. 2009. Sulphur oxidizing bacteria and pulse nutrition - A review. World J. Agric. Sci. 5:270-8.

Wang J, Zhao Y, Zhang J, Zhao W, Müller C, Cai Z. 2017. Nitrification is the key process determining N use efficiency in paddy soils. J. Plant Nutr. Soil Sci. 180:648-58. DOI: https://doi.org/10.1002/jpln.201700130

Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B. 2012. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 46:4434-41. DOI: https://doi.org/10.1021/es204212z

Xie L, Liu M, Ni B, Wang Y. 2012. New environment-friendly use of wheat straw in slow-release fertilizer formulations with the function of superabsorbent. Ind. Eng. Chem. Res. 51:3855-62. DOI: https://doi.org/10.1021/ie2016043

Xie L, Liu M, Ni B, Zhang X, Wang Y. 2011. Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem. Eng. J. 167:342-8. DOI: https://doi.org/10.1016/j.cej.2010.12.082

Yang G, Ji H, Liu H, Zhang Y, Chen L, Zheng J, Guo Z, Sheng J. 2020. Assessment of productivity, nutrient uptake and economic benefits of rice under different nitrogen management strategies. PeerJ 8:e9596. DOI: https://doi.org/10.7717/peerj.9596

Yang S, Peng S, Xu J, He Y, Wang Y. 2015. Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields. Paddy Water Environ. 13:71-80 DOI: https://doi.org/10.1007/s10333-013-0408-9

Yang Y, He C, Huang L, Ban Y, Tang M. 2017. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PloS one 12:e0182264. DOI: https://doi.org/10.1371/journal.pone.0182264

Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L. 2013. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crop. Res. 144:212-24. DOI: https://doi.org/10.1016/j.fcr.2012.12.003

Zanin L, Tomasi N, Zamboni A, Varanini Z, Pinton R. 2015. The urease inhibitor NBPT negatively affects DUR3-mediated uptake and assimilation of urea in maize roots. Front. Plant Sci. 6:1007. DOI: https://doi.org/10.3389/fpls.2015.01007

Zhang J, Chen H, Wang A. 2006. Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo-attapulgite composites. Eur. Polym. J. 42:101-8. DOI: https://doi.org/10.1016/j.eurpolymj.2005.06.029

Zhang S, Yang Y, Gao B, Wan Y, Li YC, Zhao C. 2016. Bio-based interpenetrating network polymer composites from locust sawdust as coating material for environmentally friendly controlled-release urea fertilizers. J. Agric. Food Chem. 64:5692-700. DOI: https://doi.org/10.1021/acs.jafc.6b01688

Zhao B, Dong S, Zhang J, Liu P. 2013. Effects of controlled-release fertiliser on nitrogen use efficiency in summer maize. PLoS One 8:e70569. DOI: https://doi.org/10.1371/journal.pone.0070569

Zhou T, Wang Y, Huang S, Zhao Y. 2018. Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for environment-friendly controlled-release urea fertilizers. Sci. Total Environ. 615:422-30. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.084

Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S. 2019. Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci. 289:110270. DOI: https://doi.org/10.1016/j.plantsci.2019.110270

Zvomuya F, Rosen CJ. 2001. Evaluation of polyolefin-coated urea for potato production on a sandy soil. HortScience 36:1057-60. DOI: https://doi.org/10.21273/HORTSCI.36.6.1057

Published
2021-03-22
Keywords:
Smart fertilizer, nanofertilizers, composite materials, bioformulation, slow-release fertilizers, control release fertilizers, fertilizers bioactivation.
Statistics
  • Abstract views: 1246

  • PDF: 287
  • Appendix: 20
How to Cite
Raimondi, G., Maucieri, C., Toffanin, A., Renella, G., & Borin, M. (2021). Smart fertilizers: What should we mean and where should we go?. Italian Journal of Agronomy, 16(2). https://doi.org/10.4081/ija.2021.1794