Predictive phytotoxic value of water-soluble allelochemicals in plant extracts for choosing a cover crop or mulch for specific weed control

Submitted: 15 March 2021
Accepted: 9 July 2021
Published: 13 September 2021
Abstract Views: 1872
PDF: 392
HTML: 23
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Cover crops and mulches have become an alternative for soil management in vineyards due to the agronomic, environmental, and economic advantages, especially the possibility of weed control. Implicitly to this objective lies the idea of assessing the potential herbicide effect of the allelochemicals released by different cover crops and mulch species. With this objective, the present work evaluated the phytotoxic effects of 12 aqueous extracts of selected species with potential use as a cover crop or mulch: a Bromus species mixture (B. hordeaceus L. and B. rubens L.), Festuca arundinacea Schreb., Hordeum murinum L., H. vulgare L., Vulpia ciliata Dumort., Medicago rugosa Desr., M. sativa L., Trifolium subterraneum L., T. incarnatum L., Phacelia tanacetifolia Benth., Sinapis alba L., and Pinus sylvestris L., on the germination and early growth of three troublesome weeds (Conyza bonariensis (L.) Cronquist, Aster squamatus (Spreng.) Hieron, and Bassia scoparia (L.) A. J.). The different in vitro bioassays showed that aqueous extracts of some species significantly inhibited or reduced germination and root and shoot growth of the target weed species in a dose-response manner. Germination of A. squamatus and C. bonariensis was reduced by 100-80% by the different extracts applied at 50% concentration and completely blocked at 100% concentration, except for M. rugosa extract, to which both species showed less sensitivity. Root elongation of A. squamatus was inhibited under every extract and concentration, whereas C. bonariensis root growth showed only some tolerance to the crude extracts of F. arundinacea and P. sylvestris. Bassia scoparia was relatively tolerant to the aqueous plant extracts, except for T. subterraneum crude extract, which reduced total germination by 80%; otherwise, B. scoparia showed higher general sensitivity of shoot growth than the other two weed species. The chemical profiles of phenolic compounds of the aqueous extracts were obtained and identified by HPLC-DAD, the phenolic profiles of H. murinum, V. ciliata, and M. rugosa being reported in this work for the first time. Using stepwise regression, the influence of certain phenolic compounds from the aqueous extracts on the germination and early growth of weeds was predicted. Among other significant compounds, the flavonoid naringenin identified in T. subterraneum aqueous extract at 8.09 μg·mL–1 was predicted to underlie its specific phytotoxicity on B. scoparia germination. These results support the use of cover crops and mulches in weed management and can help to select the most suitable species to adopt according to the target weed species.

Highlights
- The phytotoxic nature of the aqueous extracts of twelve conventional and novel cover crops and mulch species was demonstrated in vineyards’ three troublesome weed species.

- Phenolic acids and flavonoids of the twelve aqueous extracts were identified and quantified by HPLC-DAD, and, by regression analysis, some allelochemicals were postulated as responsible for the phytotoxic effects.
- The water-soluble phenolic profiles of three potential cover crops, namely Hordeum murinum, Vulpia ciliata, and Medicago rugosa, are reported for the first time.
- In vitro germination and early root growth of Conyza bonariensis and Aster squamatus were almost entirely restricted by any of the twelve plants’ aqueous extracts and presumably by the joint action of their particular allelopathic compounds.
- Bassia scoparia germination was relatively much less sensitive to the extracts, except for Trifolium subterraneum, for which the flavonoid naringenin was predicted to underlie its specific phytotoxicity.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abad J, Marín D, Gonzaga Santesteban L, Cibriain JF, Sagüés A, 2020. Under-wine cover crops: impact on weed development, yield and grape composition. OENO One. 54:975-83. DOI: https://doi.org/10.20870/oeno-one.2020.54.4.4149
Aklıbaşında M, Külekçi EA, Demir M, Bulut Y, 2017. The inhibiting effects of Scots pine (Pinus sylvestris) on germination ability and growth of some culture ryegrass species. J. Environ. Biol. 38:919-22. DOI: https://doi.org/10.22438/jeb/38/5(SI)/GM-047
Al-Alahmadi MJ, Mohammad K, 2007. Cardinal temperatures for germination of Kochia scoparia (L.). J. Arid Environ. 68:308-14. DOI: https://doi.org/10.1016/j.jaridenv.2006.05.006
Alcántara C, Pujadas A, Saavedra M, 2011. Management of Sinapis alba subsp. mairei winter cover crop residues for summer weed control in southern Spain. Crop Prot. 30:1239-44. DOI: https://doi.org/10.1016/j.cropro.2011.04.007
Álvarez-Iglesias L, Puig CG, Garabatos A, Reigosa MJ, Pedrol N, 2014. Vicia faba aqueous extracts and plant material can suppress weeds and enhance crops. Allelopathy J. 34:299.
Álvarez-Iglesias L, Puig CG, Revilla P, Reigosa MJ, Pedrol N, 2018. Faba as green manure for field weed control in maize. Weed Res. 58:437-49. DOI: https://doi.org/10.1111/wre.12335
Baghestani A, Lemieux C, Leroux GD, Baziramakenga R, Simard RR, 1999. Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci. 47:498-504. DOI: https://doi.org/10.1017/S0043174500092171
Bajkacz S, Baranowska I, Buszewski B, Kowalski B, Ligor M, 2018. Determination of flavonoids and phenolic acids in plant materials using SLE-SPE-UHPLC-MS/MS method. Food Anal. Methods. 11:3563-75. DOI: https://doi.org/10.1007/s12161-018-1332-9
Bajwa AA, Sadia S, Ali HH, Jabran K, Peerzada AM, Chauhan BS, 2016. Biology and management of two important Conyza weeds: a global review. Environ. Sci. Pollut. Res. 23:24694-710. DOI: https://doi.org/10.1007/s11356-016-7794-7
Bertholdsson NO, 2004. Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res. 44:78-86. DOI: https://doi.org/10.1111/j.1365-3180.2003.00375.x
Bertoldi C, De Leo M, Ercoli L, Braca A, 2012. Chemical profile of Festuca arundinacea extract showing allelochemical activity. Chemoecology 22:13-21. DOI: https://doi.org/10.1007/s00049-011-0092-4
Bielinis E, Kwiatkowski J, Boiko S, 2019. Identification of Pinus sylvestris clones with highest and lowest allelopathic potential. Bal. For. 25:8. DOI: https://doi.org/10.46490/vol25iss1pp052
Blum U, 1996. Allelopathic interactions involving phenolic acids. J. Nematol. 28:259.
Bulut Y, Demir M, 2007. The allelopathic effects of scots pine (Pinus sylvestris L.) leaf extracts on turf grass seed germination and seedling growth. Asian J. Chem. 19:3169-77.
Buta JG, Spaulding DW, 1989. Allelochemicals in tall fescue-abscisic and phenolic acids. J. Chem. Ecol. 15:1629-36. DOI: https://doi.org/10.1007/BF01012389
Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, Gobin A, Vacca A, Quinton J, Auerwald K, Klik A, Kwaad FJPM, 2010.Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122:167-77. DOI: https://doi.org/10.1016/j.geomorph.2010.06.011
Chaves N, Sosa T, Escudero JC, 2001. Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J. Chem. Ecol. 27:623-31.
Chon SU, Kim YM, 2002. Biological activity and quantification of suspected allelochemicals from alfalfa plant parts. J. Agron. Crop Sci. 188:281-5. DOI: https://doi.org/10.1046/j.1439-037X.2002.00574.x
Chon SU, Kim YM, 2004. Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. J. Agron. Crop Sci. 190:145. DOI: https://doi.org/10.1111/j.1439-037X.2004.00088.x
Cipollini D, Stevenson R, Enright S, Eyles A, Bonello P, 2008. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34:144-52. DOI: https://doi.org/10.1007/s10886-008-9426-2
Creamer NG, Bennett MA, Strinner BR, Cardina J, Regnier EE, 1996. Mechanisms of weed suppression in cover crop-based production systems. Hort. Sci. 31:410-3. DOI: https://doi.org/10.21273/HORTSCI.31.3.410
De Prado R, Dominguez C, Tena M, 1989. Characterization of triazine- resistant biotypes of common lambsquarters (Chenopodium album), hairy fleabane (Conyza bonariensis) and yellow foxtail (Setaria glauca) found in Spain. Weed Sci.37:1-4. DOI: https://doi.org/10.1017/S0043174500055752
Deng N, Zheng B, Li T, Liu RH, 2020. Assessment of the phenolic profiles, hypoglycemic activity, and molecular mechanism of different highland barley (Hordeum vulgare L.) varieties. Int. J. Mol. Sci. 21:1175. DOI: https://doi.org/10.3390/ijms21041175
Dhima KV, Vasilakoglou IB, Eleftherohorinos IG, Lithourgidis AS, 2006. Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Sci. 46:345-52. DOI: https://doi.org/10.2135/cropsci2005-0186
Dhima K, Vasilakoglou I, Lithourgidis A, Mecolari E, Keco R, Agolli XH, Eleftherohorinos I, 2008. Phytotoxicity of 10 winter barley varieties and their competitive ability against common poppy and ivy-leaved speedwell. Exp. Agric. 44:385. DOI: https://doi.org/10.1017/S001447970800639X
Dziedzinski M, Kobus-Cisowska J, Szymanowska D, Stuper-Szablewska K, Baranowska M, 2020. Identification of polyphenols from coniferous shoots as natural antioxidants and antimicrobial compounds. Molecules. 25:3527. DOI: https://doi.org/10.3390/molecules25153527
Einhellig FA, 2004. Mode of allelochemical action of phenolic compounds. In: F.A. Macías, J.C.G. Galindo, J.M.G. Molinillo, H.G. Cutler (Eds.), Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, FL, USA, pp. 217-238. DOI: https://doi.org/10.1201/9780203492789.ch11
Farooq M, Jabran K, Cheema Z, Wahid A, Siddique K, 2011. The role of allelopathy in agricultural pest management. Pest Manag. Sci. 67:493-506. DOI: https://doi.org/10.1002/ps.2091
FFerreres F., Krskova Z, Goncalves RF, Valentao P, Pereira JA, Dusek J, Martin J, Andrade PB, 2009. Free water-soluble phenolics profiling in barley (Hordeum vulgare L.). J. Agric. Food Chem. 57:2405-9. DOI: https://doi.org/10.1021/jf8037727
Friesen LF, Beckie HJ, Warwick SI, Van Acker RC, 2009. The biology of Canadian weeds. 138. Kochia scoparia (L.) Schrad. Can. J. Plant Sci. 89:141-67. DOI: https://doi.org/10.4141/CJPS08057
Fujii Y, 2001. Screening and future exploitation of allelopathic plants as alternative herbicides with special reference to hairy vetch. J. Crop Prod. 4:257-75. DOI: https://doi.org/10.1300/J144v04n02_09
Garcia L, Celette F, Gary C, Ripoche A, Valdés-Gómez H, Metay A, 2018. Management of service crops for the provision of ecosystem services in vineyards: a review. Agr. Ecosys. Environ. 251:158-70. DOI: https://doi.org/10.1016/j.agee.2017.09.030
Gómez J, Llewellyn C, Basch G, Sutton P, Dyson J, Jones C, 2011. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manag. 27:502-14. DOI: https://doi.org/10.1111/j.1475-2743.2011.00367.x
Heap I, 2021. The international survey of herbicide resistant weeds; June 22. Available from: www.weedscience.org
Hiradate S, 2006. Strategies for searching bioactive compounds: Total activity vs. specific activity. Amer. Chem. Soc. Symp. Ser. 927:113-27. DOI: https://doi.org/10.1021/bk-2006-0927.ch009
Horvat D, Šimić G, Drezner G, Lalić A, Ledenčan T, Tucak M, Plavšić H, Andrić L, Zdunić Z, 2020. Phenolic acid profiles and antioxidant activity of major cereal crops. Antioxidants. 9:527. DOI: https://doi.org/10.3390/antiox9060527
Hossen K, Das KR, Okada S, Iwasaki A, Suenaga K, Kato-Noguchi H, 2020. Allelopathic potential and active substances from Wedelia Chinensis (Osbeck). Foods. 9:1591. DOI: https://doi.org/10.3390/foods9111591
Hura T, Dubert F, Dąbkowska T, Stupnicka-Rodzynkiewicz E, Stokłosa A, Lepiarczyk A, 2006. Quantitative analysis of phenolics in selected crop species and biological activity of these compounds evaluated by sensitivity of Echinochloa crus-galli. Acta Physiol. Plant. 28:537-45. DOI: https://doi.org/10.1007/s11738-006-0049-3
Hussain MI, Gonzalez L, Souto XC, Reigosa MJ, 2011. Ecophysiological responses of three native herbs to phytotoxic potential of invasive Acacia melanoxylon R.Br. Agroforest. Syst. 83:149-66. DOI: https://doi.org/10.1007/s10457-011-9433-0
Ibáñez S, 2015. Mantenimiento del suelo en el viñedo mediante cubiertas vegetales. Ed. Gobierno de la Rioja, pp. 167.
Ibáñez S, Perez JL, Peregrina F, Garcia-Escudero E, 2011. Utilización de cubiertas vegetales en viñedos de la D.O.Ca. Rioja (España). Bulletín de l’OIV. 84:347-60.
Inderjit, 1996. Plant phenolics in allelopathy. Botanical Rev. 62:186-202. DOI: https://doi.org/10.1007/BF02857921
Inderjit, Weston LA, Duke SO, 2005. Challenges, achievements and opportunities in allelopathy research. J. Plant Interact. 1:69-81. DOI: https://doi.org/10.1080/17429140600622535
Jose CM, Brandão Torres LM, Torres MAMG, Shirasuna RT, Farias DA, dos Santos Jr. NA, Grombone-Guaratini MT, 2016. Phytotoxic effects of phenolic acids from Merostachys riedeliana, a native and overabundant Brazilian bamboo. Chemoecology. 26:235-46. DOI: https://doi.org/10.1007/s00049-016-0224-y
Kempen HM, Graf J, 1981. Weed seed production. Proceedings of the Western Society of Weed Science, 34:78-81.
Kolodziejczyk-Czepas J, Nowak P, Kowalska I, Stochmal A, 2015. Antioxidant action of six Trifolium species in blood platelet experimental system in vitro. Mol. Cell. Biochem. 410:229-37. DOI: https://doi.org/10.1007/s11010-015-2556-2
Kozlowska H, Rotkiewicz D, Zadernowski R, 1983. Phenolic acids in rapeseed and mustard. J. Am. Oil Chem. Soc. 60:1119-23. DOI: https://doi.org/10.1007/BF02671339
Kruidhof HM, van Dam NM, Ritz C, Lotz LAP, Kropff MJ, Bastiaans L, 2014. Mechanical wounding under field conditions: A potential tool to increase the allelopathic inhibitory effect of cover crops on weeds? Eur. J. Agron. 52:229-36. DOI: https://doi.org/10.1016/j.eja.2013.09.003
Kunz CH, Sturm DJ, Varnholt D, Walker F, Gerhards R, 2016. Allelopathic effects and weed suppressive ability of cover crops. Plant Soil Environ. 62:60-6. DOI: https://doi.org/10.17221/612/2015-PSE
Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA, 2010. Phenolics and plant allelopathy. Molecules. 15:8933-52. DOI: https://doi.org/10.3390/molecules15128933
Macías FA, Galindo JC, Molinillo JM, (Eds.) 2003. Allelopathy: chemistry and mode of action of allelochemicals. CRC Press, Boca Raton, FL, USA.
Masi M, Pannacci E, Santoro E, Zermane N, Superchi S, Evidente A, 2020. Stoechanones a and b, phytotoxic copaane sesquiterpenoids isolated from Lavandula stoechas with potential herbicidal activity against Amaranthus retroflexus. J. Nat. Prod. 83:1658-65. DOI: https://doi.org/10.1021/acs.jnatprod.0c00182
Mayer AM, Poljakoff-Mayber A, 1963. The germination of seeds. Pergamon Press, Oxford, UK, pp. 244.
Morlat R, Jacquet A, 2003. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am. J. Enol. Viticult. 54:1-7.
Oerke E, 2006. Crop losses to pests. J. Agric. Sci. 144:31-43. DOI: https://doi.org/10.1017/S0021859605005708
Oleszek W, Stochmal A, Janda B, 2007. Concentration of isoflavones and other phenolics in the aerial parts of Trifolium species. J. Agric. Food Chem. 55:8095-100. DOI: https://doi.org/10.1021/jf072024w
Osipitan OA, 2016. Relative ecological fitness of glyphosate-resistant Kochia from Western Kansas. Ph.D dissertation. Kansas State University, Manhattan, KS, USA, pp. 14-114.
Osipitan O, Dille J, Bagavathiannan M, Knezevic S, 2019. Modeling population dynamics of Kochia (Bassia scoparia) in response to diverse weed control options. Weed Sci. 67:57-67. DOI: https://doi.org/10.1017/wsc.2018.85
Osuna MD, Fischer AJ, De Prado R, 2003. Herbicide resistance in Aster squamatus conferred by less sensitive form of acetolactate synthase. Pest Manag. Sci. 59:1210-6. DOI: https://doi.org/10.1002/ps.757
Pannacci E, Masi M, Farneselli M, Tei F, 2020. Evaluation of Mugwort (Artemisia vulgaris L.) aqueous extract as a potential bioherbicide to control amaranthus retroflexus L. in maize. Agriculture 10:642. DOI: https://doi.org/10.3390/agriculture10120642
Pardo-Muras M, Puig CG, Souto XC, Pedrol N, 2020. Water-soluble phenolic acids and flavonoids involved in the bioherbicidal potential of Ulex europaeus and Cytisus scoparius. S. Afr. J. Bot. 133:201-11. DOI: https://doi.org/10.1016/j.sajb.2020.07.023
Piasecka A, Sawikowska A, Krajewski P, Kachlicki P, 2015. Combined mass spectrometric and chromatographic methods for in‐depth analysis of phenolic secondary metabolites in barley leaves. J. Mass Spectrom. 50:513-32. DOI: https://doi.org/10.1002/jms.3557
Price AJ, Stoll ME, Bergtold JS, Arriaga FJ, Balkcom KS, Kornecki TS, Raper RL, 2008. Effect of cover crop extracts on cotton and radish radicle elongation. Commun. Biometry Crop Sci. 3:60-6.
Prosdocimi M, Cerdà A, Tarolli P, 2016. Soil water erosion on Mediterranean vineyards: a review. Catena 141:1-21. DOI: https://doi.org/10.1016/j.catena.2016.02.010
Puig CG, Reigosa MJ, Valentão P, Andrade PB, Pedrol N, 2018. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS One 13:e0192872. DOI: https://doi.org/10.1371/journal.pone.0192872
Puig CG, Revilla P, Barreal ME, Reigosa MJ, Pedrol N, 2019. On the suitability of Eucalyptus globulus green manure for field weed control. Crop Prot. 121:57-65. DOI: https://doi.org/10.1016/j.cropro.2019.03.016
Recasens J, Valencia F, Montull JM, Taberner A, 2018. Malas hierbas problemáticas en viñedos con cubiertas vegetales y métodos químicos para su control. Vida Rural 448:48-58.
Reigosa MJ, Pazos‐Malvido E, 2007. Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J. Chem. Ecol. 33:1456-66. DOI: https://doi.org/10.1007/s10886-007-9318-x
Reigosa MJ, Souto XC, González L, 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 28:83-8. DOI: https://doi.org/10.1023/A:1006269716762
Restuccia A, Scavo A, Lombardo S, Pandino G, Fontanazza S, Anastasi U, Abbate C, Mauromicale G, 2020. Long-term effect of cover crops on species abundance and diversity of weed flora. Plants 9:1506. DOI: https://doi.org/10.3390/plants9111506
Rice A, Johnson-Maynard J, Thill D, Morra M, 2007. Vegetable crop emergence and weed control following amendment with different Brassicaceae seed meals. Renew. Agr. Food Syst. 22:204-12. DOI: https://doi.org/10.1017/S1742170507001743
Šajna N, Kaligarič M, Ivajnšič D, 2014. Reproduction biology of an alien invasive plant: a case of drought-tolerant Aster squamatus on the Northern Adriatic Seacoast, Slovenia. In: S. Rannow, M. Neubert (Eds.), Managing protected areas in central and eastern Europe under climate change. Advances in Global Change Research, vol 58. Springer, Dordrecht, the Netherlands. DOI: https://doi.org/10.1007/978-94-007-7960-0_19
Savage D, Borger CP, Renton M, 2014. Orientation and speed of wind gusts causing abscission of wind-dispersed seeds influences dispersal distance. Funct. Ecol. 28:973-81. DOI: https://doi.org/10.1111/1365-2435.12234
Scavo A, Restuccia A, Lombardo S, Fontanazza S, Abbate C, Pandino G, Anastasi U, Onofri A, Mauromicale G, 2020. Improving soil health, weed management and nitrogen dynamics by Trifolium subterraneum cover cropping. Agron. Sustain. Dev. 40:1-12. DOI: https://doi.org/10.1007/s13593-020-00621-8
Schappert A, Schumacher M, Gerhards R, 2019. Weed control ability of single sown cover crops compared to species mixtures. Agronomy 9:294. DOI: https://doi.org/10.3390/agronomy9060294
Serajchi M, Schellenberg MP, Lamb EG, 2017. The potential of seven native north American forage species to suppress weeds through allelopathy. Can. J. Plant Sci. 97:881-90.
Souto XC, Bolaño JC, González L, Santos XX, 2001. HPLC techniques-phenolics. In: Handbook of plant ecophysiology techniques. Springer, Dordrecht, the Netherlands, pp. 251-282. DOI: https://doi.org/10.1007/0-306-48057-3_18
Sturm DJ, Peteinatos G, Gerhards R, 2018. Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Res. 58:331-7. DOI: https://doi.org/10.1111/wre.12316
Tava A, Pecio Ł, Lo Scalzo R, Stochmal A, Pecetti L, 2019. Phenolic content and antioxidant activity in Trifolium germplasm from different environments. Molecules 24:298. DOI: https://doi.org/10.3390/molecules24020298
Tursun N, Işık D, Demir Z, Jabran K, 2018. Use of living, mowed, and soil-incorporated cover crops for weed control in apricot orchards. Agronomy 8:150. DOI: https://doi.org/10.3390/agronomy8080150
Urbano J, Borrego A, Torres V, Leon J, Jimenez C, Dinelli G, Barnes J, 2007. Glyphosate-resistant Hairy Fleabane (Conyza bonariensis) in Spain. Weed Technol. 21:396-401. DOI: https://doi.org/10.1614/WT-06-096.1
Warren Raffa D, Antichi D, Carlesi S, Frasconi C, Marini S, Priori S, Bàrberi P, 2021. Groundcover mulching in Mediterranean vineyards improves soil chemical, physical and biological health already in the short term. Agron. 11:787. DOI: https://doi.org/10.3390/agronomy11040787
Weston LA, Duke SO, 2003. Weed and crop allelopathy. Crit. Rev. Plant Sci. 22:367-89. DOI: https://doi.org/10.1080/713610861
Wu H, Walker S, Rolling MJ, Yuen DK, Robinson G, Werth J, 2007. Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis (L.) Cronquist). Weed Biol. Manag. 7:192-9. DOI: https://doi.org/10.1111/j.1445-6664.2007.00256.x
Xuan TD, Tsuzuki E, Terao H, Matsuo M, Khanh TD, 2003. Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L.). Plant Prod. Sci. 6:165-71. DOI: https://doi.org/10.1626/pps.6.165
Zgórka G, 2011. Studies on phytoestrogenic and nonphytoestrogenic compounds in Trifolium incarnatum L. and other clover species using pressurized liquid extraction and high-performance column liquid chromatography with photodiode-array and fluorescence detection. J. AOAC Int. 94:22-31. DOI: https://doi.org/10.1093/jaoac/94.1.22
Zhang HY, Qi SS, Dai ZC, Zhang M, Sun JF, Du DL, 2017. Allelopathic potential of flavonoids identified from invasive plant Conyza canadensis on Agrostis stolonifera and Lactuca sativa. Allelopathy J. 41:223-38. DOI: https://doi.org/10.26651/2017-41-2-1098
Zielniok K, Szkoda K, Gajewska M, Wilczak J, 2016. Effect of biologically active substances present in water extracts of white mustard and coriander on antioxidant status and lipid peroxidation of mouse C 2 C 12 skeletal muscle cells. J. Anim. Physiol. Anim. Nutr. 100:988-1002. DOI: https://doi.org/10.1111/jpn.12412

How to Cite

Puig, C. G., Valencia-Gredilla, F., Pardo-Muras, M., Souto, X. C., Recasens, J., & Pedrol, N. (2021). Predictive phytotoxic value of water-soluble allelochemicals in plant extracts for choosing a cover crop or mulch for specific weed control. Italian Journal of Agronomy, 16(4). https://doi.org/10.4081/ija.2021.1872