Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

Main Article Content

Stella Lovelli *
M. Monteleone
G. Posca
Michele Perniola
(*) Corresponding Author:
Stella Lovelli |


A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing) was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively). Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation). Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the crop, while rainfed conditions at the highest fertilization rate generally established a N-surplus.

Downloads month by month


Download data is not yet available.

Article Details