Agro-energy supply chain planning: a procedure to evaluate economic, energy and environmental sustainability

Main Article Content

Fabrizio Ginaldi *
Francesco Danuso
Franco Rosa
Alvaro Rocca
Oxana Bashanova
Emiliano Sossai
(*) Corresponding Author:
Fabrizio Ginaldi | fabrizio.ginaldi@uniud.it

Abstract

The increasing demand for energy and expected shortage in the medium term, solicit innovative energy strategies to fulfill the increasing gap between demand-supply. For this purpose it is important to evaluate the potential supply of the energy crops and finding the areas of EU where it is most convenient. This paper proposes an agro-energy supply chain approach to planning the biofuel supply chain at a regional level. The proposed methodology is the result of an interdisciplinary team work and is aimed to evaluate the potential supply of land for the energy production and the efficiency of the processing plants considering simultaneously economic, energy and environmental targets. The crop simulation, on the basis of this approach, takes into account environmental and agricultural variables (soil, climate, crop, agronomic technique) that affect yields, energy and economic costs of the agricultural phase. The use of the Dijkstra’s algorithm allows minimizing the biomass transport path from farm to collecting points and the processing plant, to reduce both the transport cost and the energy consumption. Finally, a global sustainability index (ACSI, Agro-energy Chain Sustainability Index) is computed combining economic, energy and environmental aspects to evaluate the sustainability of the Agroenergy supply chain (AESC) on the territory. The empirical part consists in a pilot study applied to the whole plain of Friuli Venezia Giulia (FVG) a region situated in the North-Eastern part of Italy covering about 161,300 ha. The simulation has been applied to the maize cultivation using three different technologies (different levels of irrigation and nitrogen fertilization: low, medium and high input). The higher input technologies allow to achieve higher crop yields, but affect negatively both the economic and energy balances. Low input levels provides, on the average, the most favourable energy and economic balances. ACSI indicates that low inputs levels ensure a more widespread sustainability of the agro-energy chain in the region. High ACSI values for high input levels are observed only for areas with very high yields or near the processing plant.

Downloads month by month

Downloads

Download data is not yet available.

Article Details

Author Biographies

Fabrizio Ginaldi, University of Udine

Department of Agriculture and Environmental Sciences

Francesco Danuso, University of Udine

Department of Agriculture and Environmental Sciences

Franco Rosa, University of Udine

Department of Food Sciences

Alvaro Rocca, University of Udine

Department of Agriculture and Environmental Sciences

Oxana Bashanova, University of Udine

Department of Agriculture and Environmental Sciences

Emiliano Sossai, University of Udine

Department of Food Sciences