A wooded riparian strip set up for nitrogen removal can affect the water flux microbial composition

Main Article Content

Mizanur Md. Rahman
Marina Basaglia
Lorenzo Favaro
Bruno Boz
Bruna Gumiero
Sergio Casella *
(*) Corresponding Author:
Sergio Casella | sergio.casella@unipd.it

Abstract

This research is part of a project aimed at verifying the potential of a specifically assessed wooded riparian zone in removing excess of combined nitrogen from the Zero river flow for the reduction of nutrient input into Venice Lagoon. Specific objectives were pursued to determine seasonal fluctuations of the microbial populations from the input water to a drainage ditch, conveying back the flux into the river after passing through the soil of the wooded riparian strip. The bacterial communities were determined by combined approaches involving cultivation, microscopic methods and DNA based techniques to determine both culturable and total microbial community in water. The results indicate that the size of the bacterial population, including the culturable fraction, increases from the river to the drainage ditch especially on the warm season. The multiple approach here adopted enabled also to demonstrate that the special condition created in the buffer strip supports the development and the metabolism of the microbial community. The nature of the bacterial population, in terms of phylotypes distribution, was investigated by 16S rDNA analysis indicating that the most represented genera belong to Gamma-proteobacteria, which is known to include an exceeding number of important pathogens. In spring, the effect of the buffer strip seems to significantly reduce such a sub-population. The changes observed for the total bacterial community composition become much evident in summer, as revealed by both denaturing gradient gel electrophoresis cluster analysis and by the diversity index calculation. The hydraulic management coupled to the suspension of farming practices and the development of the woody and herbaceous vegetation resulted in a condition suitable for the containment of undesired microbiota (mainly during the spring season) while continuing to support denitrification activity (especially throughout the summer) as verified by the total nitrogen removal.

Downloads month by month

Downloads

Download data is not yet available.

Article Details

Author Biography

Sergio Casella, Department of Agronomy Food Natural resources Animals and Environment, University of Padova, Legnaro (PD)

full professor