Physiological and nutritional significance of potassium application under sole and intercropped maize (Zea mays L.)

Submitted: 11 September 2020
Accepted: 7 January 2021
Published: 17 March 2021
Abstract Views: 912
PDF: 631
HTML: 322
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Aftab Ahmed maharaa80@qq.com College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China.
  • Atta Mohi Ud Din College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, Chile.
  • Samina Aftab College of Management, Sichuan Agricultural University, Chengdu, Sichuan, China.
  • John Kwame Titriku College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China.
  • Shoaib Ahmed College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China.
  • Muhammad Nizamani Sindh Agriculture University, Tandojam Sindh, Pakistan.
  • Zameer Hussain Jamali College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, China.
  • Xiao Tei College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China.
  • Feng Yang College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China.
  • Wenyu Yang College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China.

Highlights
- Potassium nutrient management in maize-soybean strip intercropping can increase the resource use efficiency.
- Compared to the T0 (no potassium), T2 (80 kg ha–1 on maize) application increases the light interception and leaf area index of maize by 17% and 38% respectively.
- Regression analysis reveals a positive relationship between physiological parameters measured at R2 and at R6 growth stages in maize under maize-soybean strip intercropping.
- High K2O (80 kg ha–1) inputs enhanced the partitioning of biomass production in maize.
- Overall, the optimum K2O application increased the maize yield by 16% under maize-soybean strip intercropping system relative to control.

 

Globally, maize is an essential food and fodder crop. Fertilisers, as soil amendments, particularly K2O, could increase maize yields. A Two-year field research was designed in 2018- 2019 to examine the influence of three-potassium fertiliser applications on maize-soybean strip intercropping and sole-maize yield components. A Randomized complete block design with three replications was used, and one of three K2O doses (T0, 0; T1, 40:30; T2, 80:60 kg ha–1) was given in each plot. The effects K2O treatments on photosynthetic characteristics, photosynthetic active radiation, leaf area index, total biomass accumulation, and seed yield were investigated at V6, R2, R4, and R6. Compared to T0, maize-soybean strip intercropping system and sole-maize results showed T2 maize enhanced the light interception by 14, 26, 15, and 17% at V6, R2, R4, and R6 respectively. Maize increased the partitioning of biomass to cob and seed by 8 and 10% at R6, respectively in T2, relative to T0 treatment. T2 showed a higher green leaf area than T0; K2O applications led to an enhancement in leaf area index at R6 by 38%, under T2, and subsequently increased the photosynthetic rate at R4 and R6 by 8% and 6% respectively, in both years of the study. These results suggest that we may increase the accumulation of biomass and the yield of the maize seed under maize-soybean strip intercropping system and sole-maize by optimum K application in maize plants.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ahmed A, Aftab S, Hussain S, Nazir Cheema H, Liu W, Yang F, Yang W, 2020. Nutrient accumulation and distribution assessment in response to potassium application under maize–soybean intercropping system. Agronomy 10:725. DOI: https://doi.org/10.3390/agronomy10050725
Amanullah A, Iqbal A, Iqbal M, 2015. Impact of potassium rates and their application time on dry matter partitioning, biomass and harvest index of maize (Zea mays) with and without cattle dung application. Emirates J. Food Agric.: 447-53. DOI: https://doi.org/10.9755/ejfa.2015.04.042
Amanullah I, 2016. Residual phosphorus and zinc influence wheat productivity under rice–wheat cropping system. Springerplus 5:255. DOI: https://doi.org/10.1186/s40064-016-1907-0
Baque MA, Karim MA, Hamid A, Tetsushi H, 2006. Effects of fertilizer potassium on growth, yield and nutrient uptake of wheat (Triticum aestivum) under water stress conditions. South Pacific. Stud. 27:25-35.
Bengtsson H, Öborn I, Jonsson S, Nilsson I, Andersson A, 2003. Field balances of some mineral nutrients and trace elements in organic and conventional dairy farming - a case study at Öjebyn, Sweden. Eur. J. Agron. 20:101-16. DOI: https://doi.org/10.1016/S1161-0301(03)00079-0
Chen Q, Mu X, Chen F, Yuan L, Mi G, 2016. Dynamic change of mineral nutrient content in different plant organs during the grain filling stage in maize grown under contrasting nitrogen supply. Eur. J. Agron. 80:137-53. DOI: https://doi.org/10.1016/j.eja.2016.08.002
Clergue B, Amiaud B, Pervanchon F, Lasserre-Joulin F, Plantureux S, 2009. Biodiversity: function and assessment in agricultural areas: a review. In: Sustainable Agriculture. Springer, pp 309-27. DOI: https://doi.org/10.1007/978-90-481-2666-8_21
Cong R, Li H, Zhang Z, Ren T, Li X, Lu J, 2016. Evaluate regional potassium fertilization strategy of winter oilseed rape under intensive cropping systems: Large-scale field experiment analysis. F. Crop. Res. 193:34-42. DOI: https://doi.org/10.1016/j.fcr.2016.03.004
Dan Y, Shi-Hua QI, Zhang J-Q, Tan L-Z, Zhang J-P, Zhang Y, Feng X, Xin-Li X, Ying H, Wei C, 2012. Residues of organochlorine pesticides (OCPs) in agricultural soils of Zhangzhou City, China. Pedosphere 22:178-89. DOI: https://doi.org/10.1016/S1002-0160(12)60004-6
Darilek JL, Huang B, Wang Z, Qi Y, Zhao Y, Sun W, Gu Z, Shi X, 2009. Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agric. Ecosyst. Environ. 129:286-92. DOI: https://doi.org/10.1016/j.agee.2008.10.002
Dobermann AR, 2001. Crop potassium nutrition–implications for fertilizer recommendations. Agronomy & Horticulture - Faculty Publications. 17:357 in Proc. 31st North Central Ext. Indus. Soil Fert. Conf., Des Moines, Iowa state, USA.
Dong H, Kong X, Li W, Tang W, Zhang D, 2010. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. F. Crop. Res. 119:106-13. DOI: https://doi.org/10.1016/j.fcr.2010.06.019
Du X, Zhang L, Li H, Yang F, Bian X, 2007. Effects of potassium application on nutrient absorption dynamics, biomass and quality formation of forage maize. Plant Nutr. Fertil. Sci. 13:393-7.
Duchene O, Vian J-F, Celette F, 2017. Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 240:148-61. DOI: https://doi.org/10.1016/j.agee.2017.02.019
Ebelhar SA, Varsa EC, 2000. Applications in sustainable production: Tillage and potassium placement effects on potassium utilization by corn and soybean. Commun. Soil Sci. Plant Anal. 31:2367-77. DOI: https://doi.org/10.1080/00103620009370591
Epstein E, Bloom AJ, 2005. Mineral nutrition of plants: principles and perspectives. 2nd ed. Sinauer Assoc. Inc., Sunderland, UK.
Eskandari H, Ghanbari-Bonjar A, Galavi M, Salari M, 2009. Forage quality of cow pea (Vigna sinensis) intercropped with corn (Zea mays) as affected by nutrient uptake and light interception. Not. Bot. Horti Agrobot. Cluj-Napoca 37:171-4.
Fan Y, Chen J, Cheng Y, Raza MA, Wu X, Wang Z, Liu Q, Wang R, Wang X, Yong T, 2018. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system. PLoS One 13:e0198159. DOI: https://doi.org/10.1371/journal.pone.0198159
Feng L, Raza MA, Chen Y, Khalid MH Bin, Meraj TA, Ahsan F, Fan Y, Du J, Wu X, Song C, 2019. Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system. PLoS One 14:e0212885. DOI: https://doi.org/10.1371/journal.pone.0212885
Gerardeaux E, Saur E, Constantin J, Porté A, Jordan-Meille L, 2009. Effect of carbon assimilation on dry weight production and partitioning during vegetative growth. Plant Soil 324:329-43. DOI: https://doi.org/10.1007/s11104-009-9950-z
Gliessman SR, 1990. Agroecology: researching the ecological basis for sustainable agriculture. In: Agroecology. Springer, pp 3-10. DOI: https://doi.org/10.1007/978-1-4612-3252-0_1
Grote U, Craswell E, Vlek P, 2005. Nutrient flows in international trade: Ecology and policy issues. Environ. Sci. Policy 8:439-51. DOI: https://doi.org/10.1016/j.envsci.2005.05.001
He C, Ouyang Z, Tian Z, Schaffer HD, 2012. Yield and potassium balance in a wheat–maize cropping system of the North China Plain. Agron. J. 104:1016-22. DOI: https://doi.org/10.2134/agronj2011.0418
He P, Yang L, Xu X, Zhao S, Chen F, Li S, Tu S, Jin J, Johnston AM, 2015. Temporal and spatial variation of soil available potassium in China (1990-2012). F. Crop. Res. 173:49-56. DOI: https://doi.org/10.1016/j.fcr.2015.01.003
Hedlund A, Witter E, An BX, 2003. Assessment of N, P and K management by nutrient balances and flows on peri-urban smallholder farms in southern Vietnam. Eur. J. Agron. 20:71-87. DOI: https://doi.org/10.1016/S1161-0301(03)00076-5
Homer CD, Pratt PF, 1961. Methods of analysis for soils, plants and waters. University of California. Agr. Sci. Publ. Berkeley, USA.
Hu W, Zhao W, Yang J, Oosterhuis DM, Loka DA, Zhou Z, 2016. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiol. Biochem. 101:113-23. DOI: https://doi.org/10.1016/j.plaphy.2016.01.019
Huoyan W, Cheng W, Ting L, Jianmin Z, Xiaoqin C, 2016. Can nonexchangeable potassium be differentiated from structural potassium in soils? Pedosphere 26:206-15. DOI: https://doi.org/10.1016/S1002-0160(15)60035-2
Jackson ML, 1973. Soil chemical analysis. Prentice hall of india Pvt. Ltd., New Delhi, India, pp 478.
Jenkinson DS, 1968. Chemical tests for potentially available nitrogen in soil. J. Sci. Food Agric. 19:160–8. DOI: https://doi.org/10.1002/jsfa.2740190310
Jordan-Meille L, Pellerin S, 2004. Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant Soil 265:75-92. DOI: https://doi.org/10.1007/s11104-005-0695-z
Khalid M, Raza M, Yu H, Sun F, Zhang Y, Lu F, Si L, Iqbal N, Khan I, Fu F, 2019. Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristics of soybeans (Glycine max L. Merr.). Appl. Ecol. Environ. Res. 17:2551-69. DOI: https://doi.org/10.15666/aeer/1702_25512569
Li S, Duan Y, Guo T, Zhang P, He P, Johnston A, Shcherbakov A, 2015. Potassium management in potato production in Northwest region of China. F. Crop. Res. 174:48-54. DOI: https://doi.org/10.1016/j.fcr.2015.01.010
Liu T, Huang R, Cai T, Han Q, Dong S, 2017. Optimum leaf removal increases nitrogen accumulation in kernels of maize grown at high density. Sci. Rep. 7:1-10. DOI: https://doi.org/10.1038/srep39601
Liu W, Deng Y, Hussain S, Zou J, Yuan J, Luo L, Yang C, Yuan X, Yang W, 2016. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. F. Crop. Res. 196:261-7. DOI: https://doi.org/10.1016/j.fcr.2016.07.008
Liu X, Rahman T, Song C, Yang F, Su B, Cui L, Bu W, Yang W, 2018. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. F. Crop. Res. 224:91-101. DOI: https://doi.org/10.1016/j.fcr.2018.05.010
Ma Q, Scanlan C, Bell R, Brennan R, 2013. The dynamics of potassium uptake and use, leaf gas exchange and root growth throughout plant phenological development and its effects on seed yield in wheat (Triticum aestivum) on a low-K sandy soil. Plant Soil 373:373-84. DOI: https://doi.org/10.1007/s11104-013-1812-z
Moonen A-C, Barberi P, 2008. Functional biodiversity: an agroecosystem approach. Agric. Ecosyst. Environ. 127:7-21. DOI: https://doi.org/10.1016/j.agee.2008.02.013
Niu J, Zhang W, Chen X, Li C, Zhang F, Jiang L, Liu Z, Xiao K, Assaraf M, Imas P, 2011. Potassium fertilization on maize under different production practices in the North China Plain. Agron. J. 103:822-9. DOI: https://doi.org/10.2134/agronj2010.0471
Niu J, Zhang W, Ru S, Chen X, Xiao K, Zhang X, Assaraf M, Imas P, Magen H, Zhang F, 2013. Effects of potassium fertilization on winter wheat under different production practices in the North China Plain. F. Crop. Res. 140:69-76. DOI: https://doi.org/10.1016/j.fcr.2012.10.008
Olsen SR, Sommers LE, 1982. Phosphorus. p. 403–430. AL Page et al.(ed.) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA and SSSA, Madison, WI. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c24
Olsen SR, 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture. Cir. 939.
Oosterhuis D, 2001. Physiology and nutrition of high yielding cotton in the USA. Informações Agronômicas 95:18-24. DOI: https://doi.org/10.1081/PLN-100104969
Oosterhuis DM, Loka DA, Kawakami EM, Pettigrew WT, 2014. The physiology of potassium in crop production. In: Advances in agronomy. Elsevier, pp 203-33. DOI: https://doi.org/10.1016/B978-0-12-800132-5.00003-1
Page AL, Miller RH, Keeney DR, 1982. Methods of soil analysis. Part 2. American Society of Agronomy. Soil Sci. Soc. Am. Madison, WI, USA.
Pan Y, Lu Z, Lu J, Li X, Cong R, Ren T, 2017. Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiol. Biochem. 113:110-21. DOI: https://doi.org/10.1016/j.plaphy.2017.01.027
Patrick JW, Zhang W, Tyerman SD, Offler CE, Walker NA, 2001. Role of membrane transport in phloem translocation of assimilates and water. Funct. Plant Biol. 28:697-709. DOI: https://doi.org/10.1071/PP01023
Pettigrew WT, 2008a. Effects of K on plant metabolism. Physiol. Plant 133:670-81.
Pettigrew WT, 2008b. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133:670-81. DOI: https://doi.org/10.1111/j.1399-3054.2008.01073.x
Pettigrew WT, Meredith Jr WR, 1997. Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J. Plant Nutr. 20:531-48. DOI: https://doi.org/10.1080/01904169709365272
Pietsch D, Mabit L, 2012. Terrace soils in the Yemen Highlands: using physical, chemical and radiometric data to assess their suitability for agriculture and their vulnerability to degradation. Geoderma 185:48-60. DOI: https://doi.org/10.1016/j.geoderma.2012.03.027
Pretty J, 2008. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 363:447-65. DOI: https://doi.org/10.1098/rstb.2007.2163
Rahman T, Liu X, Hussain S, Ahmed S, Chen G, Yang F, Chen L, Du J, Liu W, Yang W, 2017. Water use efficiency and evapotranspiration in maize-soybean relay strip intercrop systems as affected by planting geometries. PLoS One 12:e0178332. DOI: https://doi.org/10.1371/journal.pone.0178332
Raza MA, Feng LY, Khalid MHB, Iqbal N, Meraj TA, Hassan MJ, Ahmed S, Chen YK, Feng Y, Wenyu Y, 2019a. Optimum leaf excision increases the biomass accumulation and seed yield of maize plants under different planting patterns. Ann. Appl. Biol. 175:54-68. DOI: https://doi.org/10.1111/aab.12514
Raza MA, Feng LY, van der Werf W, Cai GR, Khalid MH Bin, Iqbal N, Hassan MJ, Meraj TA, Naeem M, Khan I, 2019b. Narrowâ€wideâ€row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relayâ€intercropping system. Food Energy Secur. 8:e170. DOI: https://doi.org/10.1002/fes3.170
Raza MA, Khalid MH Bin, Zhang X, Feng LY, Khan I, Hassan MJ, Ahmed M, Ansar M, Chen YK, Fan YF, 2019c. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Sci. Rep. 9:1-14. DOI: https://doi.org/10.1038/s41598-019-41364-1
Römheld V, Kirkby EA, 2010. Research on potassium in agriculture: needs and prospects. Plant Soil 335:155-80. DOI: https://doi.org/10.1007/s11104-010-0520-1
Shuting D, Kongjun W, Changhao H, 2000. Development of canopy apparent photosynthesis among maize varieties from different eras. Zuo Wu Xue Bao 26:200-4.
Su BY, Song YX, Song C, Cui L, Yong TW, Yang WY, 2014. Growth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest China. Photosynthetica 52:332-40. DOI: https://doi.org/10.1007/s11099-014-0036-7
Tabatabaii ES, Yarnia M, Khorshidi MB, Farajzadeh E, 2011. Effect of potassium fertilizer on corn yield (Jeta cv.) under drought stress condition. Am.-Euras. J. Agric. Environ. Sci 10:257-63.
Wang H-J, Huang B, Shi X-Z, Darilek JL, Yu D-S, Sun W-X, Zhao Y-C, Chang Q, Öborn I, 2008. Major nutrient balances in small-scale vegetable farming systems in peri-urban areas in China. Nutr. Cycl. Agroecosyst. 81:203-18. DOI: https://doi.org/10.1007/s10705-007-9157-8
Wang X, Zhao X, Jiang C, Li C, Cong S, Wu D, Chen Y, Yu H, Wang C, 2015. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J. Integr. Agric. 14:856-63. DOI: https://doi.org/10.1016/S2095-3119(14)60848-0
Wezel A, Casagrande M, Celette F, Vian J-F, Ferrer A, Peigné J, 2014. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34:1-20. DOI: https://doi.org/10.1007/s13593-013-0180-7
Wiebold B, Scharf P, 2006. Potassium deficiency symptoms in drought stressed crops, plant stress resistance and the impact of potassium application south china. Agron. J 98:1354-9.
Wortmann CS, Kaizzi CK, 1998. Nutrient balances and expected effects of alternative practices in farming systems of Uganda. Agric. Ecosyst. Environ. 71:115-29. DOI: https://doi.org/10.1016/S0167-8809(98)00135-2
Wu L, Cui Z, Chen X, Zhao R, Si D, Sun Y, Yue S, 2014. Highâ€yield maize production in relation to potassium uptake requirements in China. Agron. J. 106:1153-8. DOI: https://doi.org/10.2134/agronj13.0538
Wu L, Ma W, Zhang C, Wu L, Zhang W, Jiang R, Zhang F, Cui Z, Chen X, 2013. Current potassiumâ€management status and grainâ€yield response of Chinese maize to potassium application. J. Plant Nutr. Soil Sci. 176:441-9. DOI: https://doi.org/10.1002/jpln.201200314
Xu X, He P, Pampolino MF, Chuan L, Johnston AM, Qiu S, Zhao S, Zhou W, 2013. Nutrient requirements for maize in China based on QUEFTS analysis. F. Crop. Res. 150:115-25. DOI: https://doi.org/10.1016/j.fcr.2013.06.006
Yang F, Huang S, Gao R, Liu W, Yong T, Wang X, Wu X, Yang W, 2014. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. F. Crop. Res. 155:245-53. DOI: https://doi.org/10.1016/j.fcr.2013.08.011
Yang F, Liao D, Wu X, Gao R, Fan Y, Raza MA, Wang X, Yong T, Liu W, Liu J, 2017. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. F. Crop. Res. 203:16-23. DOI: https://doi.org/10.1016/j.fcr.2016.12.007
Yuhui G, Guojun C, Lichun W, Shuhua W, 2019. Potassium accumulation, partitioning, and remobilization in high-yield spring maize in Northeast China. J. Plant Nutr. 42:1366-77. DOI: https://doi.org/10.1080/01904167.2019.1609501
Yuncong Y, Shaohui W, Yun K, 2007. Characteristics of photosynthesis machinism in different peach species under low light intensity. Sci. Agric. Sin. 40:855-63.
Zhan A, Zou C, Ye Y, Liu Z, Cui Z, Chen X, 2016. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. F. Crop. Res. 191:13-9. DOI: https://doi.org/10.1016/j.fcr.2016.04.001
Zhang H-M, Yang X-Y, He X-H, Xu M-G, Huang S-M, Liu H, Wang B-R, 2011. Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat-maize rotation in China. Pedosphere 21:154-63. DOI: https://doi.org/10.1016/S1002-0160(11)60113-6
Zhao D, Oosterhuis DM, Bednarz CW, 2001. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103-9. DOI: https://doi.org/10.1023/A:1012404204910
Zhen L, Zoebisch MA, Chen G, Feng Z, 2006. Sustainability of farmers’ soil fertility management practices: A case study in the North China Plain. J. Environ. Manage. 79:409-19. DOI: https://doi.org/10.1016/j.jenvman.2005.08.009

How to Cite

Ahmed, A., Mohi Ud Din, A. ., Aftab, S., Titriku, J. K., Ahmed, S., Nizamani, M., Jamali, Z. H., Tei, X., Yang, F., & Yang, W. (2021). Physiological and nutritional significance of potassium application under sole and intercropped maize (<em>Zea mays</em> L.). Italian Journal of Agronomy, 16(1). https://doi.org/10.4081/ija.2021.1737

Similar Articles

You may also start an advanced similarity search for this article.