Acetic acid disturbs rice germination and post-germination under controlled conditions mimicking green mulching in flooded paddy

Submitted: 3 June 2021
Accepted: 19 September 2021
Published: 8 March 2022
Abstract Views: 945
PDF: 387
Appendix: 139
HTML: 42
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Greta Masserano Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy.
  • Barbara Moretti Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy.
  • Chiara Bertora chiara.bertora@unito.it Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy.
  • Francesco Vidotto Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy.
  • Stefano Monaco Research Centre for Cereal and Industrial Crops, Vercelli, Italy.
  • Francesco Vocino Uptofarm Srl, Grugliasco (TO), Italy.
  • Teofilo Vamerali Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Legnaro (PD), Italy.
  • Dario Sacco Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy.

Cover crop use in organic rice cropping systems efficiently manages the two most limiting factors in organic agriculture - weed competition and nutrient availability. Nonetheless, cover crop biomasses on soil surfaces under the anaerobic conditions in flooded rice systems produce organic acids (mainly acetic acid) that cause early phytotoxicity to rice seedling coleoptile and roots. This study evaluated the dose-response of acetic acid on germination rates and post-germination growth traits (coleoptile, first leaf, and roots). Under controlled conditions, the seeds of three rice varieties (Sant’Andrea, Salvo, and Selenio) were immersed in acetic acid concentrations (0, 9, 18, 36, 54, and 72 ppm) for eight days. Germination results suggest that acetic acid likely scarred var. Salvo, based on a 15% faster germination rate compared to untreated controls. Across all varieties, increased acetic acid concentrations never slowed germination. During post-germination growth stages, root phytotoxicity was always more evident than shoot phytotoxicity, although the responses varied among the varieties. Root length damage appeared first at acetic acid concentrations of 36 ppm in var. Sant’Andrea and Selenio, and at 54 ppm in var. Salvo. Root length measurements provided explicit and speedy information on varietal tolerance to acetic acid and, consequently to cover crop fermentation and suggested that direct observation of root damage in paddy fields is valuable for prompt water management decisions, such as flooding interruption. Further development of this method may lead to more complete varietal screening and identification of related genetic traits responsible for tolerance.

Highlights
- Based on genotype, increasing acetic acid levels in flooding waters can speed rice germination.

- Roots are more sensitive than shoots to acetic acid phytotoxicity during very early germination.
- Early root length impairments provide information on tolerance to acetic acid phytotoxicity.
- A slower germination rate may induce higher tolerance to green mulching.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Armstrong J, Armstrong W, 2001. Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am. J. Bot. 88:1359-70. DOI: https://doi.org/10.2307/3558443
Bewley JD, 1997. Seed germination and dormancy. Plant Cell 9:1055-66. DOI: https://doi.org/10.1105/tpc.9.7.1055
Biswas KJ, Ho A, Kenichi K, 2001. Effect of volatile fatty acids on seedling growth of anoxia-tolerant rice (Oriza sativa L.) Genotype. J. Soil Sci. Plant Nutr. 47:87-100. DOI: https://doi.org/10.1080/00380768.2001.10408371
Brain P, Cousens R, 1989. An equation to describe dose responses where there is stimulation of growth at low dose. Weed Res. 29:93-6. DOI: https://doi.org/10.1111/j.1365-3180.1989.tb00845.x
Bohnen H, Souza da Silva L, Mussoi M, Vera R, Marcolin E, 2005. Acidos orgânicos na solução de um gleissolo sob diferentes sistemas de cultivo com arroz irrigado. Rev Bras. Cienc. 29:475-80. DOI: https://doi.org/10.1590/S0100-06832005000300018
Camargo FAO, Zonta E, Araujo SG, Rossiello R, Pereira O, 2001. Aspecto fisiologicos e caracterizacao de toxidadez de acidos organicos volateis em plantas. Ciencia Rural 31:223-9. DOI: https://doi.org/10.1590/S0103-84782001000300029
Campiglia E, Paolini R, Colla G, Mancinelli R, 2009. The effects of cover cropping on yield and weed control of potato in a transitional system. Field Crops Res. 112:16-23. DOI: https://doi.org/10.1016/j.fcr.2009.01.010
Campiglia E, Mancinelli R, Radicetti E, Caporali F, 2010. Effect of cover crops and mulches on weed control and nitrogen fertilization in tomato (Lycopersicon esculentum Mill.). J. Crop Prot. 29:354-63. DOI: https://doi.org/10.1016/j.cropro.2009.12.001
Cannell RQ, Lynch JM, 1984. Possible adverse effects of decomposing crop residues on plant growth. pp 455-475 in Organic matter and rice. International Rice Research Institute, Manila, Philippines.
Capone R, Bilali HE, Debs P, Cardone G, Driouech N, 2014. Food system sustainability and food security: connecting the dots. J Food Secur. 2:13-22.
Chandrasekaran S, Yoshida T, 1973. Effect of organic acid transformations in submerged soils on growth of the rice plant. J. Soil Sci. Plant. Nutr. 19:39-45. DOI: https://doi.org/10.1080/00380768.1973.10432517
Cohn MA, Chiles LA, Hughes JA, Boullion KJ, 1987. Seed dormancy in red rice, VI. Monocarboxylic acids: a new class of pH-dependent germination stimulants. Plant Physiol. 84:716-9. DOI: https://doi.org/10.1104/pp.84.3.716
Creamer NG, Dabney SM, 2002. Killing cover crops mechanically: review of recent literature and assessment of new research results. Am. J. Alternative Agr. 17:32-40. DOI: https://doi.org/10.1079/AJAA200204
De Ponti T, Rijk B, Van Ittersum MK, 2012. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108:1-9. DOI: https://doi.org/10.1016/j.agsy.2011.12.004
FAOSTAT, 2019. Available from: http://www.fao.org/faostat/en/#data
Ferreira da Silveira S, Kopp da Luz V, Wolte DD, Castro dos Santos FI, Viana TP, Silva Fernandes B, de Cassia Oliveira D, Oliveira de Sousa R, Carlos da Maia L, Costa de Oliveira A, 2014. Response of oat seedlings to stress caused by acetic and butyric acids. Bragantia, Campinas, 73:345-56. DOI: https://doi.org/10.1590/1678-4499.166
FiBL 2019. Available from: https://statistics.fibl.org/
Fortes MA, Sousa RO, Schmidt F, Vahl LC, 2008. Toxidez por ácido acético em arroz sob diferentes valores de pH da solução nutritiva. Ciencia Rural 38:1581-8. DOI: https://doi.org/10.1590/S0103-84782008000600014
Haque MM, Sang YK, Prabhat P, Gun-Yeob K, Pil Joo K, 2013. Optimum application level of winter cover crop biomass as green manure under considering methane emission and rice productivity in paddy soil. Biol. Fert. Soils 49:487-93. DOI: https://doi.org/10.1007/s00374-012-0766-2
Hartwig NL, 2002. Cover crops and living mulches. Weed Sci. 50:688-99. DOI: https://doi.org/10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2
Huang L, Yu J, Yang J, Zhang R, Bai Y, Sun C, Zhuang H, 2016. Relationships between yield, quality and nitrogen uptake and utilization of organically grown rice varieties. Pedosphere 26:85-97. DOI: https://doi.org/10.1016/S1002-0160(15)60025-X
Ismail AM, Ella ES, Vergara GV, Mackill DJ, 2009. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann. Botany 103:197-209. DOI: https://doi.org/10.1093/aob/mcn211
Johnson SE, Angeles RO, Buresh RJ, 2006. soil solution sampling for organic acids in rice paddy soils. Soil Sci. Soc. Am. J. 70:48-56. DOI: https://doi.org/10.2136/sssaj2005.0070
Kopp MM, Luz VK, Maia LC, Sousa RO, Carvalho FIF, Oliveira AC, 2009. Avaliação de genótipos de aveia branca sob estresse de ácidos orgânicos. Bragantia 68:329-38. DOI: https://doi.org/10.1590/S0006-87052009000200006
Kopp MM, Luz VK, Sousa RO, Maia LC, Souza FS, Oliveira AC, 2012. Organic acid effects on nutrient uptake by rice. Commun. Soil Sci. Plan. 43:2512-20. DOI: https://doi.org/10.1080/00103624.2012.711874
Kornecki TS, Price AJ, Raper RL, Arriaga FJ, 2009. New roller crimper concepts for mechanical termination of cover crops in conservation agriculture. Renew. Agr. Food Syst. 24:165-73. DOI: https://doi.org/10.1017/S1742170509002580
Lee SS, Kim JH, Hong SB, Yun SH, Park EH, 1998. Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean J. Crop Sci. 43:194-98.
Lee KS, Choi WY, Ko JC, Kim TS, Gregoria GB, 2003. Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage. Planta 216:1043-6. DOI: https://doi.org/10.1007/s00425-002-0958-3
Le Mer J, Roger P, 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 37:25-50. DOI: https://doi.org/10.1016/S1164-5563(01)01067-6
Lewandrowski W, Erickson TE, Dixon KW, Stevens LC, 2017. Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events. J. Appl. Ecol. 54:997-1007. DOI: https://doi.org/10.1111/1365-2664.12816
Lynch JM, 1980. Effects of organic acids on the germination of seeds and growth of seedlings. Plant Cell. Environ. 3:255-9. DOI: https://doi.org/10.1111/j.1365-3040.1980.tb00798.x
Lynch JM, 1978. Production and phytotoxicity of acetic acid in anaerobic soils containing plant residues. Soil Biol. Biochem. 10: 131-135. DOI: https://doi.org/10.1016/0038-0717(78)90083-4
Magneschi L, Perata P, 2009. Rice germination and seedling growth in the absence of oxygen. Ann. Bot. 103:181-96. DOI: https://doi.org/10.1093/aob/mcn121
Masseroni D, Moller P, Tyrell R, Romani M, Lasagna A, Sali G, Facchi A, Gandolfi C, 2018. Evaluating performances of the first automatic system for paddy irrigation in Europe. Agric. Water Manag. 201:58-69. DOI: https://doi.org/10.1016/j.agwat.2017.12.019
Miniotti EF, Romani M, Said-Pullicino D, Facchi A, Bertora C, Peyron M, Sacco D, Bischetti GB, Lerda C, Tenni D, Gandolfi C, Celi L, 2016. Agro-environmental sustainability of different water management practices in temperate rice agro-ecosystems. Agr. Ecosyst. Environ. 222:235-48. DOI: https://doi.org/10.1016/j.agee.2016.02.010
Mondal S, Khan MIR, Entila F, Dxit S, Cruz PCS, Ali MP, Pittendrigh B, Septiningsih EM, Ismail A, 2020. Responses AG1 and AG2 QTL introgression lines and seed pre-treatment on growth and physiological processes during anaerobic germination of rice under flooding. Sci. Rep. 10:10214. DOI: https://doi.org/10.1038/s41598-020-67240-x
Neves LAS, Moraes DM, 2005. Análise do vigor e da atividade da α-amilase em sementes de cultivares de arroz submetidas a diferentes tratamentos com ácido acético. Rev. Ciências Agrovet. 4:35-43.
Niggli U, 2014. Sustainability of organic food production: challenges and innovations. Conference on ‘Sustainable diet and food security’, Symposium 2: Food production system. Proceedings of the Nutrition Society, 28-29 May 2013, Faculté de Médecine, Lille, France.
Onofri A, Carbonell EA, Piepho H-P, Mortimer AM, Cousens RD, 2010. Current statistical issues in weed research. Weed Res. 50:5-24. DOI: https://doi.org/10.1111/j.1365-3180.2009.00758.x
Onofri A, Benincasa P, Mesgaran BB, Ritz C, 2018. Hydrothermal-time-to-event models for seed germination. Eur. J. Agron. 101:129-39. DOI: https://doi.org/10.1016/j.eja.2018.08.011
Pacheco AC, Custodio CC, Machado Neto NB, Carvalho PR, Pereira DN, Pacheco JGE, 2007. Germinação de sementes de camomila [Chamomilla recutita (L.) Rauschert] e calêndula (Calendula officinalis L.) tratadas com ácido salicílico. Rev. Bras. Pl Med. 9:61-7.
Peyron M, Bertora C, Pelissetti S, Said-Pullicino D, Celi L, Miniotti E, Romani M, Sacco D, 2016. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agr. Ecosyst. Environ. 232:17-28. DOI: https://doi.org/10.1016/j.agee.2016.07.021
Rao DN, Mikkelsen DS, 1977. Effects of acetic, propionic, and butyric acids on rice seedling growth and nutrition. Plant Soil. 47:323-33. DOI: https://doi.org/10.1007/BF00011491
Reganold JP, Wachter JM, 2016. Organic agriculture in the twenty-first century. Nat. Plants 2:15221. DOI: https://doi.org/10.1038/nplants.2015.221
Regulation (EU) No 1308/2013 of The European Parliament and of The Council of 17 December 2013 establishing a common organisation of the markets in agricultural products and repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007.
Rigby D, Càceres D, 2001. Organic farming and the sustainability of agricultural systems. Agric. Syst. 68:21-40. DOI: https://doi.org/10.1016/S0308-521X(00)00060-3
Ritz C, Strebig JC, 2015. Package ‘drc’: Analysis of Dose-response Curves. Version 2.5-12. Available from: http://dssm.unipa.it/CRAN/web/packages/drc/index.html
Ritz C, Streibig JC, 2005. Bioassay analysis using R. J. Stat. Softw. 12:1-22. DOI: https://doi.org/10.18637/jss.v012.i05
Sacco D, Moretti B, Monaco S, Grignani C, 2015. Six–year transition from conventional to organic farming: effects on crop production and soil quality. Eur. J. Agron. 69:10-20. DOI: https://doi.org/10.1016/j.eja.2015.05.002
Sousa RO, Peralba MCR, Meurer EJ, 2007. Short chain organic acid dynamics in solution of flooded soil treated with ryegrass residues. Commun. Soil. Sci. Plan. 33:779-87. DOI: https://doi.org/10.1081/CSS-120003065
Sousa RO, Bortolon L, 2002. Crescimento radicular e da parte aérea do arroz (Oryza sativa L.) e adsorção de nutrientes, emsolução nutritiva com diferentes concentrações de ácido acético. Rev. Brasil. Agroc. 8:231-5.
Takai Y, 1970. The mechanism of methane fermentation in flooded paddy soil. Soil Sci. Plant Nutr. 16:238-44. DOI: https://doi.org/10.1080/00380768.1970.10433371
Takijima Y, 1964. Studies on the mechanism of root damage of rice plants in the peat paddy fields (part 1). Root damage and growth inhibitory substances found in the peaty and peat soil. Soil Sci. Plant Nutr. 11:20-7. DOI: https://doi.org/10.1080/00380768.1965.10431166
Tavares LC, Brunes AP, Robe da Fonseca DA, Gadotti GZ, Madruga de Tunes L, Meneghello GE, Souza AC, Barros A, 2013. Effect of acetic acid on rice seeds coated with rice husk ash. Rev. Ceres Viçosa 60:437-41. DOI: https://doi.org/10.1590/S0034-737X2013000300019
Towa LL, Guo X, Zhen B, 2013. Effects of water management and mulching on weed control and rice grain yield under water saving irrigation model. J. Food Agric. Environ. 11:538-44.
Tunes LM, Avelar SAG, Barros ACSA, Pedroso DC, Muniz MFB, Menezes NL, 2012. Critical levels of organic acids on seed germination and seedling growth of wheat. Rev. Bras. Sementes 34:366-72. DOI: https://doi.org/10.1590/S0101-31222012000300002
Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW, 2002. Managing soil fertility in organic farming systems. Soil Use Manage. 18:239-47. DOI: https://doi.org/10.1079/SUM2002131
Yadav GS, Lal R, Meena RS, Babud S, Das A, Bhowmika SN, Datta M, Layak J, Saha P, 2019. Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol. Indic. 105:303-15. DOI: https://doi.org/10.1016/j.ecolind.2017.08.071
Zampieri M, Ceglar A, Manfron G, Toreti A, Duveiller G, Romani M, Rocca C, Scoccimarro E, Podrascanin Z, Djurdjevic V, 2019. Adaptation and sustainability of water management for rice agriculture in temperate regions: The Italian case‐study. Land Degrad. Dev. 30:2033-47. DOI: https://doi.org/10.1002/ldr.3402

How to Cite

Masserano, G., Moretti, B., Bertora, C., Vidotto, F., Monaco, S., Vocino, F., Vamerali, T., & Sacco, D. (2022). Acetic acid disturbs rice germination and post-germination under controlled conditions mimicking green mulching in flooded paddy. Italian Journal of Agronomy, 17(1). https://doi.org/10.4081/ija.2022.1926