An index of environmental and cultural suitability for the cultivation of climate-resilient castor bean in rainfed low-productivity common lands in Mexico

Submitted: 11 May 2022
Accepted: 2 November 2022
Published: 23 January 2023
Abstract Views: 1187
PDF: 367
HTML: 124
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Castor bean plants yield commercially important oilseeds with multiple uses; they are characterised by tolerance to drought and adaptation to marginal soils in arid and semi-arid regions. In northern Mexico, a large amount of arid land is categorised as ejidos: a system of mixed land ownership managed under a specific legal system, where land users have access to common or individual (parcelled) land. This work aimed to examine the suitability of castor bean cultivation on unused marginal land in ejido land. To determine the environmental suitability of the ejido lands of Coahuila, Mexico, we adapted a land productivity index (PI) from an existing method; it consisted of a set of biophysical indicators (edaphic factors, climate, and topography) adapted to castor bean cultivation. We then complemented this index with a cultural component, assessing the ethnobotanical knowledge of the people, their willingness to implement a new crop type, and the type and current use of the land. As a result, we found that 114,300 ha of ejido land (1.76% of the total) were very suitable for castor bean cultivation according to the environmental-PI and that 808,524 ha of ejido land (12.4% of the total) was very suitable according to the cultural-PI. We also hypothesised that the willingness of ejidatarios to cultivate castor beans was related to their degree of knowledge about the plant and the land available for its cultivation; however, their willingness was mostly related to differences in land tenure: ejidatarios who own parcelled land were more interested in obtaining benefits from the land through the implementation of novel crops, compared to those who only have access to common land.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Adjimoti GO, Kwadzo GTM, 2018. Crop diversification and household food security status: evidence from rural Benin. Agric. Food Secur. 7:82.
Aguirre Villaseñor L, Tobón de Garza G, Mendoza R, 2018. Dinámica de las regiones de Coahuila: entre las fuerzas de la cuarta revolución industrial, el asalto a sus recursos naturales y las luchas por el espacio. In: Hoyos-Castillo G, Serrano-Oswald SE, Cantellano-Mora MP (eds). Ciudad, género, cultura y educación en las regiones. Universidad Nacional Autónoma de México y Asociación Mexicana de Ciencias para el Desarrollo Regional A.C. pp 149-75.
Balvanera P, Arias-González E, Rodríguez-Estrella R, Almeida-Leñero K, Schmitter-Soto JJ, 2016.: Una mirada al conocimiento de los ecosistemas de México. Ciudad de México; México: Universidad Nacional Autónoma de México.
Beraud Macías V, Sosa Ramírez J, Maya Delgado Y, Córdoba M, Ortega Rubio A, 2018. 84 years of Mexico´s land use planning: reflections for biodiversity conservation. Nova Scientia 10:592-629.
Buendía-Tamariz MN, Trejo-Calzada R, Sánchez-Cohen I, Flores-Hernández A, López-Santiago MA, Pedroza-Sandoval A, 2018. Growth analysis of four varieties of Ricinus communis L. in an arid region of México. Interciencia J. 43:457-79.
Carrino L, Visconti D, Fiorentino N, Fagnano M, 2020. Biofuel production with castor bean: a win-win strategy for marginal land. Agron. 10:1-22.
Challenger A, Dirzo R, López-Acosta JC, Mendoza E, Lira-Noriega A, Cruz I, 2009. Factores de cambio y estado de la biodiversidad. Capital natural de México 2:37-73.
Curry GN, Nake S, Koczberski G, Oswald M, Rafflegeau S, Lummani J, Peter E, Nailina R, 2021. Disruptive innovation in agriculture: socio-cultural factors in technology adoption in the developing world. J. Rural Stud. 88:422-31.
de França-Silva FV, da Silva-Mendes B, do Socorro-Rocha M, de Brito-Neto JF, Macêdo-Beltrão N, Sofiatti V, 2015. Photosynthetic pigments and gas exchange in castor bean under conditions of above the optimal temperature and high CO2. Acta Sci. Agron. 37:331-7.
Esri, 2019. What is EBK regression prediction? Esri. ArcGis Pro. Available from: http://bit.ly/3wa37se.
Falasca S, Uriberich AC, Uriberich E, 2012. Developing an agro-climatic zoning model to determine potential production areas for castor bean (Ricinus communis L.). Ind. Crops Prod. 40:185-91.
FAO, 2003. Evaluación de tierras con metodologías FAO. Proyecto regional "Ordenamiento Territorial Rural sostenible (Proyecto GCP/RLA/139/JPN). Available from: http://bit.ly/3w5fJRt.
FAOSTAT, 2021. Food and agriculture data. Available from: https://www.fao.org/faostat/en/#data/TM. Accessed on: August 2021.
Gardner AS, Gaston KJ, Maclean IMD, 2021 Combining qualitative and quantitative methodology to assess prospects for novel crops in a warming climate. Agric. Sys. 190:1-11.
Gingold B, Rosenbarger A, Muliastra, YIKD, Stolle F, Sudana IM, Manessa MDM, Murdimanto A, Tiangga SB, Madusari CC, Douard P, 2012. How to identify degraded land for sustainable palm oil in Indonesia. Working Paper. Washington D.C: World Resources Institute and Sekala. Available from: http://www.sekala.net/download/Degraded-land-WRI.pdf
González D, 2016. La Laguna destaca en producción agrícola. El Siglo de Torreón. Available from: https://www.elsiglodetorreon.com.mx/noticia/2016/la-laguna-destaca-en-produccion-agricola.html.
Henríquez C, Méndez JC, Masís R, 2013. Interpolación de variables de fertilidad de suelo mediante análisis Kriging y su validación. Agron. Costarricense, 37:71-82.
Hoogesteger J, Rivara F, 2020. The End of the Rural/Urban Divide? Migration, proletarianization, differentiation and peasant production in an ejido, Central Mexico. J. Agrar. Change 21.
Hufnagel J, Reckling M, Ewert F, 2020. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 40:1-17.
INEGI, 2013. Conjunto de datos de perfiles de suelos. Escala 1:250 000 Serie II. INEGI. Available from: http://bit.ly/ 3dohNgQ.
INEGI, 2017. Anuario estadístico y geográfico de Coahuila de Zaragoza 2017. Gobierno del Estado de Coahuila de Zaragoza. Available from: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825095406.pdf
INIFAP, 2012. Potencial productivo de especies agrícolas de importancia socioeconómica en México. SAGARPA. Available from: https://www.cmdrs.gob.mx/sites/default/files/cmdrs/sesion/2018/09/17/1474/materiales/inifap-estudio.pdf
Kallamadi PR, Nadigatla VPRGR, Mulpuri S, 2015. Molecular diversity in castor (Ricinus communis L.). Ind. Crops Prod. 66:271-81.
Kiran BR, Vara Prasad MN, 2017. Ricinus communis L. (castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. EuroBiotech J. 1:101-16.
Leite JGDB, Justino FB, Silva JV, Florin M, Van Ittersum M, 2015. Socioeconomic and environmental assessment of biodiesel crops on family farming systems in Brazil. Agric. Sys. 133: 22–34.
Ley Agraria, 2018. Cámara de diputados del H. Congreso de la Unión, 2018, 25 de Junio. Ultima Reforma DOF 25-06-2018. Available from: https://www.diputados.gob.mx/LeyesBiblio/ref/lagra/LAgra_ref14_25jun18.pdf
Makate C, Wang R, Makate M, Mango N, 2016. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change. SpringerPlus 5:1135.
Mazzani E, 2007. El tártago: la planta, su importancia y usos. Rev. Dig. Cent. Nac. Inv. Agropecu. 14:1-9.
McCord PF, Cox M, Schmitt-Harsh M, Evans T, 2015. Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy 42:738-50.
Méndez M, Magaña V, 2010. Regional aspects of prolonged meteorological droughts over Mexico and Central America. J. Clim. 23:1175–88.
Morales Poclava C, Sobral, Nakama V, Volante J, Bianchi A, 2015. Evaluación de tierras mediante métodos paramétricos: ajuste del sistema índice de productividad, IP, y su aplicación mediante herramientas SIG para las provincias de Salta y Jujuy. 1 ed. Buenos Aires; Argentina: Ediciones INTA. p. 35.
Morett-Sánchez JC, Cosío-Ruiz C, 2017. Panorama de los ejidos y comunidades agrarias en México. Agric. Soc. Des. 14:125-52.
NASA, 2017. U.S. Releases Enhanced Shuttle Land Elevation Data. SRTM. Available from: https://www2.jpl.nasa.gov/srtm/.
Ogunniyi DS, 2006. Castor oil: a vital industrial raw material. Bioresour. Technol. 97:1086-91.
Patanè C, Cosentino SL, Corinzia S A, Testa G, Sortino O, Scordia D, 2019. Photothermal zoning of castor (Ricinus communis L.) growing season in the semi-arid Mediterranean area. Ind. Crops Prod. 142:2-14.
Peña-Uribe GJ, Valdivia-Martínez O, López-Santos A, Valdez-Cepeda RD, 2021. Morphometry of castor bean seeds from the Durango State's arid zone, Mexico. Seed Sci. Technol. 49:247-60.
Ramírez-Barraza BA, González-Estrada A, Valdivia-Alcalá R, Salas-González JM, García-Salazar JA, 2019. Tarifas eficientes para el agua de uso agrícola en la Comarca Lagunera. Rev. Mexicana Cienc. Agric. 10:539-50.
RAN, 2019. Padrón Histórico de Núcleos Agrarios (PHINA). Available from: http://www.ran.gob.mx/ran/index.php/sistemas-de-consulta/phina.
Raya-Pérez JC, Ramírez-Pimentel JG, Covarrubias-Prieto J, Chablé-Moreno F, Aguirre-Mancilla CL, 2016. Agronomic management of castor bean (Ricinus communis L) [Article in Spanish]. Rev. Int. Inv. Innov. Tec. 4:1-10.
Rico-Ponce HR, Tapia-Vargas LM, Teniente-Oviedo R, González-Ávila A, Hernández-Martínez M, Solís-Bonilla JL, Zamarripa-Colmenero A, 2011. Guía para cultivar higuerilla (Ricinus communis L.) en Michoacán. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Apatzingán, Michoacán, México. Technical Brochure 1. pp. 43.
SAGARPA, 2017. Planeación Agrícola Nacional 2017 – 2030. Secretaría de Agricultura y Desarrollo Rural. Available from: http://bit.ly/ 3qB3cnI.
Salihu BZ, Gana AK, Apuyor BO, 2014. Castor oil plant (Ricinus communis L). Botany, ecology and uses. Int. J. Sci. Res. 5:1333-40.
Samayoa MO, 2007. Manual técnico del higuerilla. ministerio de agricultura y ganadería. Centro Nacional de Tecnología Agropecuaria y Forestal, CENTA. Programa Agroindustria. El Salvador. p.17.
Sausen TL, Rosa LMG, 2010. Growth and carbon assimilation limitations in Ricinus communis (Euphorbiaceae) under soil water stress conditions. Acta Bot. Bras. 24:648-54.
Secretaria del Medio Ambiente (SEMA), 2016. Available from: https://www.sema.gob.mx/SRN-SIIAECC-DG-UBICACION.php.
Severino LS, Auld DL, Baldanzi M, Cândido MJ, Chen G, Crosby, Tan D, Xiaohua Lakshmamma HP, Lavanya C, Machado OLT, Mielke T, Milani M, Miller TD, Morris JB, Morse SA, Navas AA, Soares DJ, Sofiatti V, Wang ML, Zanotto MD, Zieler H, 2012. A review on the challenges for increased production of castor. Agron. J. 104:853-80.
SIACON, 2021. Sistema de información agroalimentaria de consulta. Servicio de información agroalimentaria y pesquera. Available from: https://www.gob.mx/siap/documentos/siacon-ng-161430. Accessed on: December 15, 2021.
Vázquez-Chun C, 2020. Metodología para determinar aptitud ambiental para la higuerilla considerando el componente cultural del Norte de México. Science Master Thesis. Universidad Autónoma Chapingo. México. 90 p.

How to Cite

Vázque Chun, C., Peña Uribe, G. de J., López Santos, A., & Meraz Jiménez, A. de J. (2023). An index of environmental and cultural suitability for the cultivation of climate-resilient castor bean in rainfed low-productivity common lands in Mexico. Italian Journal of Agronomy, 18(1). https://doi.org/10.4081/ija.2023.2107