Assessing the effect of rotational grazing adoption in Iberian silvopastoral systems with Normalized Difference Vegetation Index time series

Published: 31 May 2023
Abstract Views: 913
PDF: 577
HTML: 103
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Antonio Frongia Department of Agricultural Sciences and Desertification Research Centre, University of Sassari, Italy.
  • Antonio Pulina anpulina@uniss.it Department of Agricultural Sciences and Desertification Research Centre, University of Sassari, Italy.
  • Alberto Tanda Department of Agricultural Sciences and Desertification Research Centre, University of Sassari, Italy.
  • Giovanna Seddaiu Department of Agricultural Sciences and Desertification Research Centre, University of Sassari, Italy.
  • Pier Paolo Roggero Department of Agricultural Sciences and Desertification Research Centre, University of Sassari, Italy.
  • Gerardo Moreno Forest Research Group, INDEHESA, University of Extremadura, Plasencia (Cáceres), Spain.

Adaptive multi-paddock (AMP) is a grazing system that combines intensive, rapid grazing livestock rotation with relatively short grazing periods and a long recovery time after grazing. The study assesses, under Mediterranean silvopastoral systems, changes in pasture phenology and spatial variability after adopting the AMP under contrasting land cover (wooded grassland versus grassland) with a remote sensing approach based on the time-series analysis of the normalized difference vegetation index (NDVI) from remote sensing through the Landsat satellite. The study revealed an overall positive effect of rotational grazing on pasture phenology and NDVI spatial variability. The AMP adoption resulted in higher estimated values of NDVI at the beginning (under grassland land cover), the end, and the peak of the growing season, while no differences were observed in parameters estimating the length of the growing season. The spatial variability of NDVI was always lower under AMP than in continuously grazed areas, except in the early stages of the growing season under grassland land cover. The results suggested that in a relatively short period (4-5 years), the AMP grazing system can represent a strategy to improve forage availability and exploitation by grazing animals under low stocking rates in extensively managed Mediterranean silvopastoral systems.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Alcaraz-Segura D, Cabello J, Paruelo J, 2008. Baseline characterization of major Iberian vegetation types based on the NDVI dynamics. Plant Ecol. 202:13-29. DOI: https://doi.org/10.1007/s11258-008-9555-2
Arenas-Corraliza I, Nieto A, Moreno G, 2020. Automatic mapping of tree crowns in scattered-tree woodlands using low-density LiDAR data and infrared imagery. Agroforest. Syst. 94:1989-2002. DOI: https://doi.org/10.1007/s10457-020-00517-2
Augustine DJ, Derner JD, Fernández-Giménez ME, Porensky LM, Wilmer H, Briske DD, 2020. Adaptive, Multipaddock Rotational Grazing Management: A Ranch-Scale Assessment of Effects on Vegetation and Livestock Performance in Semiarid Rangeland. Rangeland Ecol. Manage. 73:796-810. DOI: https://doi.org/10.1016/j.rama.2020.07.005
Barbaro L, Dutoit T, Cozic P, 2001. A six-year experimental restoration of biodiversity by shrub-clearing and grazing in calcareous grasslands of the French Prealps. Biodiversity & Conservation 10:119-135. DOI: https://doi.org/10.1023/A:1016629507196
Behcet KIR, Demiroglu G, Avcioglu R, Hikmet S, 2010. Effects of grazing on some yield and quality traits of a rotation pasture mixture under Mediterranean environmental conditions. Turkish Journal of Field Crops 15:133-136.
Blanco LJ, Ferrando CA, Biurrun FN, 2009. Remote Sensing of Spatial and Temporal Vegetation Patterns in Two Grazing Systems. Rangeland Ecol. Manage. 62:445-451. DOI: https://doi.org/10.2111/08-213.1
Briske DD, Derner JD, Brown JR, Fuhlendorf SD, Teague WR, Havstad KM, Gillen RL, Ash AJ, Willms WD, 2008. Rotational Grazing on Rangelands: Reconciliation of Perception and Experimental Evidence. Rangeland Ecol. Manage. 61:3-17. DOI: https://doi.org/10.2111/06-159R.1
Byrnes RC, Eastburn DJ, Tate KW, Roche LM, 2018. A Global Meta-Analysis of Grazing Impacts on Soil Health Indicators. J. Environ. Qual. 47:758-765. DOI: https://doi.org/10.2134/jeq2017.08.0313
Carmona CP, Azcárate FM, Oteros-Rozas E, González JA, Peco B, 2013a. Assessing the effects of seasonal grazing on holm oak regeneration: Implications for the conservation of Mediterranean dehesas. Biol. Conserv. 159:240-247. DOI: https://doi.org/10.1016/j.biocon.2012.11.015
Carmona CP, Röder A, Azcárate FM, Peco B, 2013b. Grazing management or physiography? Factors controlling vegetation recovery in Mediterranean grasslands. Ecol. Model. 251:73-84. DOI: https://doi.org/10.1016/j.ecolmodel.2012.12.005
Casals P, Garcia-Pausas J, Montané F, Romanyà J, Rovira P, 2010. Root decomposition in grazed and abandoned dry Mediterranean dehesa and mesic mountain grasslands estimated by standard labelled roots. Agric. Ecosyst. Environ. 139:759-765. DOI: https://doi.org/10.1016/j.agee.2010.10.013
Castillo-Garcia M, Alados CL, Ramos J, Moret D, Barrantes O, Pueyo Y, 2022. Understanding herbivore-plant-soil feedbacks to improve grazing management on Mediterranean mountain grasslands. Agric. Ecosyst. Environ. 327. DOI: https://doi.org/10.1016/j.agee.2021.107833
Catorci A, Lulli R, Malatesta L, Tavoloni M, Tardella FM, 2021. How the interplay between management and interannual climatic variability influences the NDVI variation in a sub-Mediterranean pastoral system: Insight into sustainable grassland use under climate change. Agric. Ecosyst. Environ. 314. DOI: https://doi.org/10.1016/j.agee.2021.107372
Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L, 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91:332-344. DOI: https://doi.org/10.1016/j.rse.2004.03.014
Congedo L, 2020. Semi-Automatic Classification Plugin Documentation Release 7.0.0.1 Luca Congedo.
den Herder M, Moreno G, Mosquera-Losada RM, Palma JHN, Sidiropoulou A, Santiago Freijanes JJ, Crous-Duran J, Paulo JA, Tomé M, Pantera A, Papanastasis VP, Mantzanas K, Pachana P, Papadopoulos A, Plieninger T, Burgess PJ, 2017. Current extent and stratification of agroforestry in the European Union. Agric. Ecosyst. Environ. 241:121-132. DOI: https://doi.org/10.1016/j.agee.2017.03.005
Díaz de Otálora X, Epelde L, Arranz J, Garbisu C, Ruiz R, Mandaluniz N, 2021. Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecol. Indicators 125. DOI: https://doi.org/10.1016/j.ecolind.2021.107484
Donaghy D, Bryant R, Cranston L, Egan M, Griffiths W, Kay J, Pembleton K, Tozer K, 2021. Will current rotational grazing management recommendations suit future intensive pastoral systems? NZGA: Research and Practice Series 17:225-242. DOI: https://doi.org/10.33584/rps.17.2021.3464
Eklundh L, Jönsson P, 2017. TIMESAT 3.3 with seasonal trend decomposition and parallel processing Software Manual. Sweden: Lund and Malmo University.
Evrendilek F, Gulbeyaz O, 2008. Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey. Sensors (Basel) 8:5270-5302. DOI: https://doi.org/10.3390/s8095270
Flood N, 2014. Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface Reflectance: A Study in the Australian Landscape. Remote Sensing 6:7952-7970. DOI: https://doi.org/10.3390/rs6097952
Golodets C, Sternberg M, Kigel J, Boeken B, Henkin Z, Seligman NG, Ungar ED, 2015. Climate change scenarios of herbaceous production along an aridity gradient: vulnerability increases with aridity. Oecologia 177:971-979. DOI: https://doi.org/10.1007/s00442-015-3234-5
Gosnell H, Grimm K, Goldstein BE, 2020. A half century of Holistic Management: what does the evidence reveal? Agriculture and Human Values 37:849-867. DOI: https://doi.org/10.1007/s10460-020-10016-w
Hadar L, Noy-Meir I, Perevolotsky A, 2009. The effect of shrub clearing and grazing on the composition of a Mediterranean plant. Journal of Vegetation Science 10:673-682. DOI: https://doi.org/10.2307/3237082
Hawkins H-J, 2017. A global assessment of Holistic Planned Grazing™ compared with season-long, continuous grazing: meta-analysis findings. African Journal of Range & Forage Science 34:65-75. DOI: https://doi.org/10.2989/10220119.2017.1358213
Hernández-Esteban A, Rolo V, López-Díaz ML, Moreno G, 2019. Long-term implications of sowing legume-rich mixtures for plant diversity of Mediterranean wood pastures. Agric. Ecosyst. Environ. 286:106686. DOI: https://doi.org/10.1016/j.agee.2019.106686
Hijmans RJ, 2020. raster: Geographic Data Analysis and Modeling. R package version 3.4-5. (online), https://CRAN.R-project.org/package=raster.
Ibáñez J, Martínez J, Schnabel S, 2007. Desertification due to overgrazing in a dynamic commercial livestock–grass–soil system. Ecol. Model. 205:277-288. DOI: https://doi.org/10.1016/j.ecolmodel.2007.02.024
Jönsson P, Eklundh L, 2004. TIMESAT—a program for analyzing time-series of satellite sensor data. Computers & Geosciences 30:833-845. DOI: https://doi.org/10.1016/j.cageo.2004.05.006
Kemp DR, Michalk DL, Virgona JM, 2000. Towards more sustainable pastures: lessons learnt. Australian Journal of Experimental Agriculture 40:343-356. DOI: https://doi.org/10.1071/EA99001
Lenth R, 2018. emmeans: Estimated Marginal Means, aka Least-Squares Means (online), https://CRAN.R-project.org/package=emmeans.
Liu H, Jin Y, Roche LM, O’Geen AT, Dahlgren RA, 2021. Understanding spatial variability of forage production in California grasslands: delineating climate, topography and soil controls. Environmental Research Letters 16. DOI: https://doi.org/10.1088/1748-9326/abc64d
Lumbierres M, Méndez P, Bustamante J, Soriguer R, Santamaría L, 2017. Modeling Biomass Production in Seasonal Wetlands Using MODIS NDVI Land Surface Phenology. Remote Sensing 9. DOI: https://doi.org/10.3390/rs9040392
Ma S, Zhou Y, Gowda PH, Chen L, Starks PJ, Steiner JL, Neel JPS, 2019. Evaluating the Impacts of Continuous and Rotational Grazing on Tallgrass Prairie Landscape Using High-Spatial-Resolution Imagery. Agronomy 9. DOI: https://doi.org/10.3390/agronomy9050238
Migliavacca M, Perez-Priego O, Rossini M, El-Madany TS, Moreno G, van der Tol C, Rascher U, Berninger A, Bessenbacher V, Burkart A, Carrara A, Fava F, Guan JH, Hammer TW, Henkel K, Juarez-Alcalde E, Julitta T, Kolle O, Martin MP, Musavi T, Pacheco-Labrador J, Perez-Burgueno A, Wutzler T, Zaehle S, Reichstein M, 2017. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytol. 214:1078-1091. DOI: https://doi.org/10.1111/nph.14437
Moreno G, Gonzalez-Bornay G, Pulido F, Lopez-Diaz ML, Bertomeu M, Juárez E, Diaz M, 2015. Exploring the causes of high biodiversity of Iberian dehesas: the importance of wood pastures and marginal habitats. Agroforest. Syst. 90:87-105. DOI: https://doi.org/10.1007/s10457-015-9817-7
Norman HC, Wilmot MG, Thomas DT, Barrett-Lennard EG, Masters DG, 2010. Sheep production, plant growth and nutritive value of a saltbush-based pasture system subject to rotational grazing or set stocking. Small Ruminant Research 91:103-109. DOI: https://doi.org/10.1016/j.smallrumres.2009.11.022
Olea L, San Miguel-Ayanz A, 2006. The Spanish dehesa. A traditional Mediterranean silvopastoral system linking production and nature conservation Proc. 21st General Meeting of the European Grassland Federation.
Park JY, Ale S, Teague WR, 2017. Simulated water quality effects of alternate grazing management practices at the ranch and watershed scales. Ecol. Model. 360:1-13. DOI: https://doi.org/10.1016/j.ecolmodel.2017.06.019
Peco B, Sánchez AM, Azcárate FM, 2006. Abandonment in grazing systems: Consequences for vegetation and soil. Agric. Ecosyst. Environ. 113:284-294. DOI: https://doi.org/10.1016/j.agee.2005.09.017
Pinheiro J, Bates D, DebRoy S, Sarkar D, RCoreTeam, 2018. nlme: Linear and Nonlinear Mixed Effects Models (online), http://CRAN.R-project.org/package=nlme>.
Plieninger T, Flinzberger L, Hetman M, Horstmannshoff I, Reinhard-Kolempas M, Topp E, Moreno G, Huntsinger L, 2021. Dehesas as high nature value farming systems: a social-ecological synthesis of drivers, pressures, state, impacts, and responses. Ecol. Soc. 26. DOI: https://doi.org/10.5751/ES-12647-260323
Porqueddu C, Ates S, Louhaichi M, Kyriazopoulos AP, Moreno G, del Pozo A, Ovalle C, Ewing MA, Nichols PGH, 2016. Grasslands in ‘Old World’ and ‘New World’ Mediterranean-climate zones: past trends, current status and future research priorities. Grass Forage Sci., 10.1111/gfs.12212:n/a-n/a. DOI: https://doi.org/10.1111/gfs.12212
Pulido M, Schnabel S, Contador JFL, Lozano-Parra J, Gómez-Gutiérrez Á, 2017. Selecting indicators for assessing soil quality and degradation in rangelands of Extremadura (SW Spain). Ecol. Indicators 74:49-61. DOI: https://doi.org/10.1016/j.ecolind.2016.11.016
Pulido M, Schnabel S, Lavado Contador JF, Lozano-Parra J, González F, 2018. The Impact of Heavy Grazing on Soil Quality and Pasture Production in Rangelands of SW Spain. Land Degrad. Dev. 29:219-230. DOI: https://doi.org/10.1002/ldr.2501
Pulina A, Ferrise R, Mula L, Brilli L, Giglio L, Iocola I, Ventrella D, Zavattaro L, Grignani C, Roggero PP, 2022. The ability of crop models to predict soil organic carbon changes in a maize cropping system under contrasting fertilization and residues management: Evidence from a long-term experiment. Ital. J. Agron. 17. DOI: https://doi.org/10.4081/ija.2022.2179
Pulina A, Rolo V, Hernández-Esteban A, Seddaiu G, Roggero PP, Moreno G, 2023. Long-term legacy of sowing legume-rich mixtures in Mediterranean wooded grasslands. Agric. Ecosyst. Environ. 348. DOI: https://doi.org/10.1016/j.agee.2023.108397
R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing (online), https://cran.r-project.org/doc/manuals/fullrefman.pdf.
Ravetto Enri S, Probo M, Farruggia A, Lanore L, Blanchetete A, Dumont B, 2017. A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity. Agric. Ecosyst. Environ. 241:1-10. DOI: https://doi.org/10.1016/j.agee.2017.02.030
Reinermann S, Asam S, Kuenzer C, 2020. Remote Sensing of Grassland Production and Management—A Review. Remote Sensing 12. DOI: https://doi.org/10.3390/rs12121949
Rivas-Martínez S, Rivas-Saenz S, Penas-Merino A, 2011. Worldwide bioclimatic classification system. Glob. Geobot. 1:1-604. DOI: https://doi.org/10.5616/ijgr110002
Rossetti I, Bagella S, 2014. Mediterranean Quercus suber wooded grasslands risk disappearance: New evidences from Sardinia (Italy). For. Ecol. Manage. 329:148-157. DOI: https://doi.org/10.1016/j.foreco.2014.06.010
Sanford P, Cullen B, Dowling PM, Chapman DF, Garden DL, Lodge GM, Andrew MH, Quigley PE, Murphy SR, King WMG, Johnston WH, Kemp DRJAJoEA, 2003. SGS Pasture Theme: Effect of climate, soil factors and management on pasture production and stability across the high rainfall zone of southern Australia. 43:945-959. DOI: https://doi.org/10.1071/EA02209
Schmitz A, Isselstein J, 2020. Effect of Grazing System on Grassland Plant Species Richness and Vegetation Characteristics: Comparing Horse and Cattle Grazing. Sustainability 12. DOI: https://doi.org/10.3390/su12083300
Seddaiu G, Bagella S, Pulina A, Cappai C, Salis L, Rossetti I, Lai R, Roggero PP, 2018. Mediterranean cork oak wooded grasslands: synergies and trade-offs between plant diversity, pasture production and soil carbon. Agroforest. Syst. 92:893-908. DOI: https://doi.org/10.1007/s10457-018-0225-7
Stumpf F, Schneider MK, Keller A, Mayr A, Rentschler T, Meuli RG, Schaepman M, Liebisch F, 2020. Spatial monitoring of grassland management using multi-temporal satellite imagery. Ecol. Indicators 113. DOI: https://doi.org/10.1016/j.ecolind.2020.106201
Teague R, Provenza F, Kreuter U, Steffens T, Barnes M, 2013. Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? J. Environ. Manage. 128:699-717. DOI: https://doi.org/10.1016/j.jenvman.2013.05.064
Teague WR, Dowhower SL, Baker SA, Haile N, DeLaune PB, Conover DM, 2011. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agriculture, Ecosystems and Environment 141:310-322. DOI: https://doi.org/10.1016/j.agee.2011.03.009
Torralba M, Oteros-Rozas E, Moreno G, Plieninger T, 2018. Exploring the Role of Management in the Coproduction of Ecosystem Services from Spanish Wooded Rangelands. Rangeland Ecol. Manage. 71:549-559. DOI: https://doi.org/10.1016/j.rama.2017.09.001
Venter ZS, Cramer MD, Hawkins H-J, 2019. Rotational grazing management has little effect on remotely-sensed vegetation characteristics across farm fence-line contrasts. Agric. Ecosyst. Environ. 282:40-48. DOI: https://doi.org/10.1016/j.agee.2019.05.019
Weiss M, Jacob F, Duveiller G, 2020. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 236. DOI: https://doi.org/10.1016/j.rse.2019.111402

How to Cite

Frongia, A., Pulina, A., Tanda, A., Seddaiu, G., Roggero, P. P., & Moreno, G. (2023). Assessing the effect of rotational grazing adoption in Iberian silvopastoral systems with Normalized Difference Vegetation Index time series. Italian Journal of Agronomy, 18(3). https://doi.org/10.4081/ija.2023.2185