Super high-density olive orchard system affects the main olive crop pests

Published: 8 May 2024
Abstract Views: 38
PDF: 37
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Silvia Landi silvia.landi@crea.gov.it CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Ilaria Cutino CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Sauro Simoni CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Stefania Simoncini CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Claudia Benvenuti CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Fabrizio Pennacchio CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Francesco Binazzi CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Silvia Guidi CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Donatella Goggioli CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Franca Tarchi CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Pio Federico Roversi CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.
  • Elisabetta Gargani CREA, Centro di Ricerca Difesa e Certificazione Sede di Firenze, Impruneta (FI), Italy.

The increasing use of the super high-density (SHD) olive orchard system requires a careful assessment of its potential impact on the main olive pests. The purpose of this study is to evaluate the SHD effect on Bactrocera oleae and other harmful phytophagous species by assessing damages caused by each pest. For three years, in three different sites in Tuscany established with Italian selection or Spanish Arbequina cultivars, the SHD management system was compared to an adjacent traditional olive orchard system in which the same soil and phytosanitary management were applied. Samplings of twigs and fruits from spring to fall together with adult monitoring of B. oleae, Prays oleae, and Palpita vitrealis by pheromone traps were used to determine infestation percentages and insects’ population dynamics. Bactrocera oleae, Liothrips oleae, and Euphillura olivina were negatively affected by the SHD olive orchard system, while P. vitrealis and Otiorhynchus cribricollis were favoured by this management. Bactrocera oleae total infestation was reduced to almost 50% in the SHD system. In contrast, Palpita vitrealis showed high infestation levels in more vigorous cultivars. Further studies are required for a complete evaluation of the impact of SHD management on olive pests.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Avidov Z, 1957. Phenology of the olive fruit fly (Dacus oleae Gmel.) in the coastal plain of Israel. Ktavim, Rehovot 8(1-2):105-116.
Bachouche N, Kellouche A, Lamine S, 2018. Effects of soil texture and burial depth on the biological parameters of overwintering pupae of Bactrocera oleae (Diptera: Tephritidae). Bioscience Research, 15(2):663-671.
Bagnoli B, 2022. Bacillus thuringiensis in olivicoltura: qualche appunto. Olivo e Olio 4:26-30
Bagnoli B, Iannotta N, 2012. Principali insetti fitofagi e relativi metodi di controllo integrato. Accademia Nazionale dell’ Olivo e dell’Olio Spoleto Collana divulgativa dell’Accademia Volume XIV, pp 40.
Barranco D, Fernández-Escobar R, Rallo L, 2008. El cultivo del olivo. 6th Edition, Co-published by Ediciones Mundi-Prensa, Madrid, and Junta de Andalucía, Sevilla, ISBN 9788484763291.
Bartolini G, 2008. Olive germplasm (Olea europaea L.). Available at: http://www.oleadb.it/olivodb.html
Broufas GD, Pappas ML, Kovdeos DS, 2009. Effect of relative humidity on longevity, ovarian maturation, and egg production in the olive fruit fly (Diptera: Tephritidae). Ann. Entol. Soc. Am. 102(1):70-75. DOI: https://doi.org/10.1603/008.102.0107
Burrack HJ, Zalom FG, 2008. Olive fruit fly (Diptera: Tephritidae) ovipositional preference and larval performance in several commercially important olive varieties in California. J. Econ. Entomol. 101(3):750-758. DOI: https://doi.org/10.1603/0022-0493(2008)101[750:OFFDTO]2.0.CO;2
Camposeo S, Ferrara G, Palasciano M, Godini M, 2008. Varietal behaviour according to the superintensive olive culture training system. Acta Hort. 791:171-274. DOI: https://doi.org/10.17660/ActaHortic.2008.791.38
Caselli A, Petacchi R, 2021. Climate Change and Major Pests of Mediterranean Olive Orchards: Are We Ready to Face the Global Heating? Insects. 12(9):802. https://doi.org/10.3390/insects12090802 DOI: https://doi.org/10.3390/insects12090802
Connor DJ, Gómez-del-Campo M, Rousseaux MC, Searles P, 2014. Structure, management and productivity of hedgerow olive orchards: a review. Sci. Hortic. 169:71-93. DOI: https://doi.org/10.1016/j.scienta.2014.02.010
Del Bene G, Gargani E, Landi S, 1997. Observations on the life cycle and diapause of Euphyllura olivina (Costa) and Euphyllura phillyreae Foerster (Homoptera Aphalaridae). Adv. Hort. Sci. 1:10-16.
Del Rio G, Lentini A, 2016. Dinamica e fattori di regolazione delle popolazioni della mosca delle olive. Atti Accademia Nazionale Italiana di Entomologia, Anno LXIV:55-62.
Fletcher BS, Pappas S, Kapatos E, 1978. Changes in the ovaries of olive flies Dacus oleae (Gmelin) during the summer and their relationship to temperature, humidity and fruit availability. Ecol. Entomol. 3:99-107. DOI: https://doi.org/10.1111/j.1365-2311.1978.tb00908.x
Iannotta N, Macchione B, Noce ME, Perri E, Scalercio S, 2006- Olive genotypes susceptibility to the Bactrocera oleae (Gmel.) infestation. Olivebioteq 2006, 5-10/11/2006, Marsala - Mazara del Vallo, Italy, Proceedings, pp. 261-266.
Jiménez Díaz RM, 2008. Impatos potenciales del cambio climático sobre las nfermedades de los cultivos. Phytoma España 203:64-69.
Kombargi WS, Michelakis SE, Petrakis CA, 1998. Effect of olive surface waxes on oviposition by Bactrocera oleae (Diptera: Tephritidae). J. Econ. Entomol. 91:993-998. DOI: https://doi.org/10.1093/jee/91.4.993
Landi S, d’Errico G, Papini R, Cutino I, Simoncini S, Rocchini A, Brandi G, Rizzo R, Gugliuzza G, Germinara GS, Nucifora S, Mazzeo G, Roversi PF, 2022. Impact of super-high density olive orchard system on soil free-living and plant-parasitic nematodes in central and south Italy. Animals 12:1551. DOI: https://doi.org/10.3390/ani12121551
Lo Bianco R, Proietti P, Regni L, Caruso T, 2021. Planting Systems for Modern Olive Growing: Strengths and Weaknesses. Agriculture 11:494. DOI: https://doi.org/10.3390/agriculture11060494
Longo F, 2019. La coltivazione dell’olivo e le principali tecniche alternative all’impiego di prodotti chimici per la lotta alla mosca dell’olivo. Ed. Rotostampa, Foggia, pp 74.
Malheiro R, Ortiz A, Casal S, Baptista P, Pereira JA, 2015. Electrophysiological response of Bactrocera oleae (Rossi) (Diptera: Tephritidae) adults to olive leaves essential oils from different cultivars and olive tree volatiles. Industrial Crops and Products 77: 81-88, ISSN 0926-6690 DOI: https://doi.org/10.1016/j.indcrop.2015.08.046
Mojdehi MRA, Gharalari A H, Keyhanian AA, Koopi N 2019. Study on susceptibility of several varieties of olive trees to olive fruit fly, Bactrocera oleae (Dip.: Tephritidae). Plant Pest Research 8(4):1-13.
Pupo D’Andrea MR, Sarnani T, 2021. Annuario dell’agricoltura italiana 2020. CREA Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria: Roma, Italy; Volume LXXIV, pp. 560, ISBN 978-88-3385-153-2.
Rallo R., Barranco D., Castro-Garcia S., Connor D.J., Gomez del Campo M., Rallo P., 2013. High-Density Olive Plantations. In Horticultural Reviews, Volume 41, First Edition. Edited by Jules Janick. Published 2013 by John Wiley & Sons, Inc. pp 303-383. DOI: https://doi.org/10.1002/9781118707418.ch07
Ramos P, Campos M, Ramos JM, 1998. Long-term study on the evaluation of yield and economic losses caused by Prays oleae Bern. in the olive crop of Granada (southern Spain). Crop Prot. 17:645–647. DOI: https://doi.org/10.1016/S0261-2194(98)00065-9
Rebora M, Salerno G, Piersanti S, Gorb E, 2020. Role of fruit epicuticolar waxes in preventing Bactrocera oleae (Diptera: Tephritidae) attachment in different cultivars of Olea europea. Insects 11:189; doi:10.3390/insects1103189. DOI: https://doi.org/10.3390/insects11030189
Ricci C, Ballatori E, 1982. Dinamica di popolazione degli adulti di Dacus oleae (Gmel.). – Frust. Ent. 4:45-75.
Rizzo R, Caleca V, 2006. Resistance to the attack of Bactrocera oleae (Gmelin) of some sicilian olive cultivars. Olivebioteq 2006 – November 5th – 10th – Mazara del Vallo, Marsala (Italy) Proceedings Volume II pp: 291-298
Rodrigo-Comino J, Salvia R, Quaranta G, Cudlín P, Salvati L, Gimenez-Morera A, 2021. Climate aridity and the geographical shift of olive trees in a Mediterranean Northern Region. Climate 9:64. https://doi.org/10.3390/cli9040064 DOI: https://doi.org/10.3390/cli9040064
Rodrigues MA, Coelho V, Arrobas M, Gouveia E, Raimundo S, Correia CM, Bento A, 2019. The effect of nitrogen fertilization on the incidence of olive cultivars grown in rainfed conditions. Sciencia Horticulturae 256:108658. DOI: https://doi.org/10.1016/j.scienta.2019.108658
Rosecrance RC, Krueger WH, Milliron L, Bloese J Garcia C, Mori B, 2015. Moderate regulated deficit irrigation can increase olive oil yields and decrease tree growth in super high density “Arbequina” olive orchars. Scientia Horticulturae 190:75-82. DOI: https://doi.org/10.1016/j.scienta.2015.03.045
Simoni S, Caruso G, Vignozzi N, Gucci R, Valboa G, Pellegrini S, Palai G, Goggioli D, Gagnarli E, 2021. Effect of Long-Term Soil Management Practices on Tree Growth, Yield and Soil Biodiversity in a High-Density Olive Agro-Ecosystem. Agronomy, 11, 1036. ttps://doi.org/10.3390/agronomy11061036 DOI: https://doi.org/10.3390/agronomy11061036
Sportelli GF, 2022. Olivicoltura superintensiva, come va in Italia? Olivo e Olio. https://olivoeolio.edagricole.it/oliveto-e-frantoio/olivicoltura-superintensiva-come-va-in-italia/
Tombesi A, Farinelli D, 2017. Canopy management in super high-density olive orchards: relationship between canopy light penetration, canopy size and productivity. Acta Hort. 1177:87-91. DOI: https://doi.org/10.17660/ActaHortic.2017.1177.9
Vivaldi GA, Strippoli G, Pascuzzi S, Stellacci AM, Camposeo S, 2015. Olive genotypes cultivated in an adult high-density orchard respond differently to canopy restraining by mechanical and manual pruning. Sci. Hortic. 192:391-399. DOI: https://doi.org/10.1016/j.scienta.2015.06.004
Yokoyama VY, Miller GT, 2007. Olive fruit fly biology and cultural control practices in California. Integrated Protection of Olive Crops IOBC/wprs Bull. 30(9):263-269.
Wang X-G, Johnson MW, Daane KM, Nadel H, 2009. High summer temperatures affect the survival and reproduction of olive fruit fly (Diptera: Tephritidae). Redia LIV:73-82. DOI: https://doi.org/10.1603/022.038.0518

How to Cite

Landi, S., Cutino, I., Simoni, S., Simoncini, S., Benvenuti, C., Pennacchio, F., Binazzi, F., Guidi, S., Goggioli, D., Tarchi, F., Roversi, P. F., & Gargani, E. (2024). Super high-density olive orchard system affects the main olive crop pests . Italian Journal of Agronomy, (Early Access). https://doi.org/10.4081/ija.2024.2220