Co-designing a method to assess agroecological transitions: results of a case study in Senegal

Published: 7 August 2023
Abstract Views: 715
PDF: 492
Supplementary Material: 108
HTML: 52
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Assessing the conditions and performance of agroecological transitions in different contexts is key to supporting these transitions. However, assessing agroecological transitions presents methodological challenges, including: 1) being adaptable to local conditions, 2) consideration of social interactions among stakeholders involved in transitions, 3) clarifying the concept of agroecology, 4) consideration of the temporal dynamics of the transitions to better understand barriers and levers in their development, and 5) using a participatory bottom-up approach. The objective of this research was to design a method that provided evidence on 1) the barriers and levers in the development of agroecological transitions, and 2) their performance related to four dimensions: techno-economic issues, agroecosystem health, quality of life and resilience. To design, test and adapt such a method, while also involving end-users, we adopted a co-design approach based on prototyping. The co-design approach unfolded in nine stages alternating research work and co-design with end-users. The prototype was built on the approaches of existing published methods covering the five challenges for assessing agroecological transitions. It consisted of a four chronological step assessment method. The first three steps consisted of framing the assessment, with the final step a multidimensional performance assessment, using an initial set of 73 indicators to cover the four dimensions. The prototype was then tested and adapted in the village of Sare Boubou, Senegal, which is going through an agroecological transition supported by a non-governmental organization. Changes during the testing and adaptation phase affected three steps of the prototype and allowed the initial prototype to adapt to the case study’s specificities, related to its scale and context. Context-related changes particularly affected the performance assessment, with a total of 31 indicators changed. The analysis of barriers and levers revealed that the transition began 29 years ago, achieved a fair level of advancement and yet was still ongoing. Results revealed heterogeneity between the nine households of the village in terms of: uptake of agroecological practices, household resources, diversification of activities, coverage of food needs through production and level of sales. This heterogeneity explained the large variability in household multidimensional performances across all dimensions. Large disparities were also noticeable at the individual level between men, women and young men in the village regarding the level of education, empowerment and participation in knowledge sharing networks. Despite a method seen as time-consuming and data intensive, end-user validation acknowledged the comprehensiveness of the method and its usefulness for steering and managing agroecological transitions, making it possible to identify levers for action at different scales.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abastante F, Corrente S, Greco S, et al (2019) A new parsimonious AHP methodology: Assigning priorities to many objects by comparing pairwise few reference objects. Expert Syst Appl 127:109–120. https://doi.org/10.1016/j.eswa.2019.02.036 DOI: https://doi.org/10.1016/j.eswa.2019.02.036
Acosta-Alba I, Van der Werf HMG (2011) The Use of Reference Values in Indicator-Based Methods for the Environmental Assessment of Agricultural Systems. Sustainability 3:424–442. https://doi.org/10.3390/su3020424 DOI: https://doi.org/10.3390/su3020424
Altieri MA, Nicholls CI (2012) Agroecology Scaling Up for Food Sovereignty and Resiliency. In: Lichtfouse E (ed) Sustainable Agriculture Reviews: Volume 11. Springer Netherlands, Dordrecht, pp 1–29 DOI: https://doi.org/10.1007/978-94-007-5449-2_1
ANSD (2017) Recensement général de la population, de l’habitat, de l’agriculture et de l’élevage. Rapport Régional définitif. Tambacounda.
Arango D, Morel D, Mees M (2019) Autodiagnostic des pratiques agroécologiques en milieu paysan. Guide méthodologique.
Barrios E, Gemmill-Herren B, Bicksler A, et al (2020) The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst People 16:230–247. https://doi.org/10.1080/26395916.2020.1808705 DOI: https://doi.org/10.1080/26395916.2020.1808705
Béguin P, Rabardel P (2001) Concevoir pour les activités instrumentées
Bell MM, Bellon S (2018) Generalization without universalization: Towards an agroecology theory. Agroecol Sustain Food Syst 42:605–611. https://doi.org/10.1080/21683565.2018.1432003 DOI: https://doi.org/10.1080/21683565.2018.1432003
Berthet ETA, Barnaud C, Girard N, et al (2016) How to foster agroecological innovations? A comparison of participatory design methods. J Environ Plan Manag 59:280–301. https://doi.org/10.1080/09640568.2015.1009627 DOI: https://doi.org/10.1080/09640568.2015.1009627
Binder CR, Feola G, Steinberger JK (2010) Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Env Impact Assess Rev 30:71–81. https://doi.org/10.1016/j.eiar.2009.06.002 DOI: https://doi.org/10.1016/j.eiar.2009.06.002
Biovision Foundation for Ecological Development & IPES-Food (2020) Money Flows: What is holding back investment in agroecological research for Africa? Biovision Foundation for Ecological Development & International Panel of Experts on Sustainable Food Systems
Cabell JF, Oelofse M (2012) An Indicator Framework for Assessing Agroecosystem Resilience. Ecol Soc 17:art18. https://doi.org/10.5751/ES-04666-170118 DOI: https://doi.org/10.5751/ES-04666-170118
Calleros-Islas A (2019) Sustainability assessment. An adaptive low-input tool applied to the management of agroecosystems in México. Ecol Indic 105:386–397. https://doi.org/10.1007/s40003-022-00617-8 DOI: https://doi.org/10.1016/j.ecolind.2017.12.040
Cerf M, Jeuffroy M-H, Prost L, Meynard J-M (2012) Participatory design of agricultural decision support tools: taking account of the use situations. Agron Sustain Dev 32:899–910. https://doi.org/10.1007/s13593-012-0091-z DOI: https://doi.org/10.1007/s13593-012-0091-z
Charue-Duboc F, Aggeri F, Chanal V, Garel G (2010) Managing exploratory innovation. Rome, Italie, p 34
Darmaun M, Chevallier T, Hossard L, et al (2023) Multidimensional and multiscale assessment of agroecological transitions. A review. Int J Agric Sustain 21:2193028. https://doi.org/10.1080/14735903.2023.2193028 DOI: https://doi.org/10.1080/14735903.2023.2193028
De Olde EM, Oudshoorn FW, Sørensen CAG, et al (2016) Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol Indic 66:391–404. https://doi.org/10.1016/j.ecolind.2016.01.047 DOI: https://doi.org/10.1016/j.ecolind.2016.01.047
De Olde EM, Sautier M, Whitehead J (2018) Comprehensiveness or implementation: Challenges in translating farm-level sustainability assessments into action for sustainable development. Ecol Indic 85:1107–1112. https://doi.org/10.1016/j.ecolind.2017.11.058 DOI: https://doi.org/10.1016/j.ecolind.2017.11.058
De Schutter O, Vanloqueren G (2011) The New Green Revolution: How Twenty-First-Century Science Can Feed the World. Solutions 2:
Dendoncker N, Boeraeve F, Crouzat E, et al (2018) How can integrated valuation of ecosystem services help understanding and steering agroecological transitions? Ecol Soc 23:art12. https://doi.org/10.5751/ES-09843-230112 DOI: https://doi.org/10.5751/ES-09843-230112
DFID (1999) Sustainable livelihoods guidance sheets.
Duru M, Therond O, Fares M (2015) Designing agroecological transitions; A review. Agron Sustain Dev 35:1237–1257. https://doi.org/10.1007/s13593-015-0318-x DOI: https://doi.org/10.1007/s13593-015-0318-x
FAO (2018) The 10 elements of agroecology. Guiding the transition to sustainable food and agricultural systems.
Fattoruso G, Scognamiglio S, Violi A (2022) A New Dynamic and Perspective Parsimonious AHP Model for Improving Industrial Frameworks. Mathematics 10:3138. https://doi.org/10.3390/math10173138 DOI: https://doi.org/10.3390/math10173138
Garcia Parrilla T, Chrétien F, Trouche G, Desclaux D (2016) La construction d’un bien commun à travers une démarche de sélection participative: le cas du blé dur adapté à l’AB. Agron Environ Sociétés 6:71–81
Gasparatos A (2010) Embedded value systems in sustainability assessment tools and their implications. J Env Manage 91:1613–1622. https://doi.org/10.1016/j.jenvman.2010.03.014 DOI: https://doi.org/10.1016/j.jenvman.2010.03.014
Gliessman S (2016) Transforming food systems with agroecology. Agroecol Sustain Food Syst 40:187–189. https://doi.org/10.1080/21683565.2015.1130765 DOI: https://doi.org/10.1080/21683565.2015.1130765
Guigou B (1999) Les fondements de l’économie locale : les usages de l’argent et de la richesse : solidarités, réciprocité et hiérarchie de statuts dans le Sine. In: Paysans sereer : dynamiques agraires et mobilités au Sénégal., Lericollais André. IRD, Paris, pp 485–520 DOI: https://doi.org/10.4000/books.irdeditions.15999
Hatt S, Artru S, Brédart D, et al (2016) Towards sustainable food systems: the concept of agroecology and how it questions current research practices. A review. Biotechnol Agron Soc Env 11. https://doi.org/10.25518/1780-4507.12997 DOI: https://doi.org/10.25518/1780-4507.12997
Hill SB, MacRae RJ (1996) Conceptual Framework for the Transition from Conventional to Sustainable Agriculture. J Sustain Agric 7:81–87. https://doi.org/10.1300/J064v07n01_07 DOI: https://doi.org/10.1300/J064v07n01_07
HLPE (2019) Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition
IAASTD (2009) International assessment of agricultural knowledge, science and technology for development : global report. Island Press, Washington, DC
IPES-Food (2018) Breaking away from industrial food and farming systems. Seven case studies of agroecological transition
Kleene P (2014) Evaluation des besoins de la Fédération Yakaar Niani Wulli. Bioprotect, Dakar
Kwatra S, Kumar A, Sharma S, Sharma P (2021) Stakeholder participation in prioritizing sustainability issues at regional level using analytic hierarchy process (AHP) technique: A case study of Goa, India. Environ Sustain Indic 11:100116. https://doi.org/10.1016/j.indic.2021.100116 DOI: https://doi.org/10.1016/j.indic.2021.100116
Lairez J, Feschet P, Aubin J, et al (2015) Agriculture et développement durable: guide pour l’évaluation multicritère, Éditions Quæ. Versailles DOI: https://doi.org/10.3917/edagri.laire.2016.01.0013
Lançon J, Wery J, Rapidel B, et al (2007) An improved methodology for integrated crop management systems. Agron Sustain Dev 27:101–110. https://doi.org/10.1051/agro:2006037 DOI: https://doi.org/10.1051/agro:2006037
Le Bellec F, Rajaud A, Ozier-Lafontaine H, et al (2012) Evidence for farmers’ active involvement in co-designing citrus cropping systems using an improved participatory method. Agron Sustain Dev 32:703–714. https://doi.org/10.1007/s13593-011-0070-9 DOI: https://doi.org/10.1007/s13593-011-0070-9
Levard L, Bertrand M, Masse P (Coordination) (2019) Mémento pour l’évaluation de l’agroécologie, Méthodes pour évaluer ses effets et les conditions de son développement, GTAE-AgroParisTechCIRAD-IRD
López-Ridaura S, Keulen H van, Ittersum MK van, Leffelaar PA (2005) Multi-scale sustainability evaluation of natural resource management systems: Quantifying indicators for different scales of analysis and their trade-offs using linear programming. Int J Sustain Dev World Ecol 12:81–97. https://doi.org/10.1080/13504500509469621 DOI: https://doi.org/10.1080/13504500509469621
Mackrell D, Kerr D, von Hellens L (2009) A qualitative case study of the adoption and use of an agricultural decision support system in the Australian cotton industry: The socio-technical view. Decis Support Syst 47:143–153. https://doi.org/10.1016/j.dss.2009.02.004 DOI: https://doi.org/10.1016/j.dss.2009.02.004
Magrini M-B, Martin G, Magne M-A, et al (2019) Agroecological Transition from Farms to Territorialised Agri-Food Systems: Issues and Drivers. In: Bergez J-E, Audouin E, Therond O (eds) Agroecological Transitions: From Theory to Practice in Local Participatory Design. Springer International Publishing, Cham, pp 69–98 DOI: https://doi.org/10.1007/978-3-030-01953-2_5
Marchand F, Debruyne L, Triste L, et al (2014) Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol Soc 19:art46. https://doi.org/10.5751/ES-06876-190346 DOI: https://doi.org/10.5751/ES-06876-190346
Martin G, Allain S, Bergez JE, et al (2018) How to Address the Sustainability Transition of Farming Systems? A Conceptual Framework to Organize Research. Sustainability 10:2083. https://doi.org/10.3390/su10062083 DOI: https://doi.org/10.3390/su10062083
McGregor A, Sumner A (2010) Beyond Business as Usual: What Might 3-D Wellbeing Contribute to MDG Momentum? IDS Bull 41:104–112. https://doi.org/10.1111/j.1759-5436.2010.00111.x DOI: https://doi.org/10.1111/j.1759-5436.2010.00111.x
McGregor JA, Camfield L, Woodcock A (2009) Needs, Wants and Goals: Wellbeing, Quality of Life and Public Policy. Appl Res Qual Life 4:135–154. https://doi.org/10.1007/s11482-009-9069-7 DOI: https://doi.org/10.1007/s11482-009-9069-7
Méndez VE, Bacon CM, Cohen R (2013) Agroecology as a Transdisciplinary, Participatory, and Action-Oriented Approach. Agroecol Sustain Food Syst 37:1:3–18. http://dx.doi.org/10.1080/10440046.2012.736926 DOI: https://doi.org/10.1080/10440046.2012.736926
Mendoza GA, Prabhu R (2009) Evaluating multi-stakeholder perceptions of project impacts: a participatory value-based multi-criteria approach. Int J Sustain Dev World Ecol 16:177–190. https://doi.org/10.1080/13504500902919672 DOI: https://doi.org/10.1080/13504500902919672
Moraine M, Lumbroso S, Poux X (2018) Transforming agri-food systems for Agroecology development: exploring conditions of success in European case studies. 16
Mottet A, Bicksler A, Lucantoni D, et al (2020) Assessing Transitions to Sustainable Agricultural and Food Systems: A Tool for Agroecology Performance Evaluation (TAPE). Front Sustain Food Syst 4:579154. https://doi.org/10.3389/fsufs.2020.579154 DOI: https://doi.org/10.3389/fsufs.2020.579154
Meuwissen MPM, Feindt PH, Spiegel A, et al (2019) A framework to assess the resilience of farming systems. Agric Syst 176:102656. https://doi.org/10.1016/j.agsy.2019.102656 DOI: https://doi.org/10.1016/j.agsy.2019.102656
Ndah HT, Schuler J, Uthes S, et al (2015) Adoption potential for conservation agriculture in Africa: a newly developed assessment approach (QAToCA) applied in Kenya and Tanzania. Land Degrad Dev 26:133–141. https://doi.org/10.1002/ldr.2191 DOI: https://doi.org/10.1002/ldr.2191
Nicholls C, Altieri M (2018) Pathways for the amplification of agroecology. In: ResearchGate. https://www.researchgate.net/publication/326950855_Pathways_for_the_amplification_of_agroecology. Accessed 20 Apr 2020 DOI: https://doi.org/10.1080/21683565.2018.1499578
Perinelle A (2021) Co-conception de systèmes de culture innovants avec deux communautés villageoises du Burkina Faso: Articulation entre traque aux innovations, prototypage participatif et expérimentations paysannes. Université Paris-Saclay
Petersen P, Silveira L, Fernandes GB, de Almeida SG (2020) Lume: a method for the economic-ecological analysis of agroecosystems
Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B Biol Sci 363:447–465. https://doi.org/10.1098/rstb.2007.2163 DOI: https://doi.org/10.1098/rstb.2007.2163
Prost L, Cerf M, Jeuffroy M-H (2012) Lack of consideration for end-users during the design of agronomic models. A review. Agron Sustain Dev 32:581–594. https://doi.org/10.1007/s13593-011-0059-4 DOI: https://doi.org/10.1007/s13593-011-0059-4
Prost L, Martin G, Ballot R, et al (2023) Key research challenges to supporting farm transitions to agroecology in advanced economies. A review. Agron Sustain Dev 43:11. https://doi.org/10.1007/s13593-022-00855-8 DOI: https://doi.org/10.1007/s13593-022-00855-8
Queyrel W, Van Inghelandt B, Colas F, et al (2023) Combining expert knowledge and models in participatory workshops with farmers to design sustainable weed management strategies. Agric Syst 208:103645. https://doi.org/10.1016/j.agsy.2023.103645 DOI: https://doi.org/10.1016/j.agsy.2023.103645
Reed MS, Fraser EDG, Dougill AJ (2006) An adaptive learning process for developing and applying sustainability indicators with local communities. Ecol Econ 59:406–418. https://doi.org/10.1016/j.ecolecon.2005.11.008 DOI: https://doi.org/10.1016/j.ecolecon.2005.11.008
Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281. https://doi.org/10.1016/0022-2496(77)90033-5 DOI: https://doi.org/10.1016/0022-2496(77)90033-5
Sane B (2021) Efficacité biologique des extraits d’Azadirachta indica A. Juss, Hyptis suaveolens (L.) Poit et Anacardium occidentale Linn. dans la lutte contre Helicoverpa armigera (Hübner, 1808) (Lepidoptera, Noctuidae) ravageur du cotonnier (Gossypium hirsutum L.) au Sénégal. Entomologie, Cheikh Anta Diop de Dakar
Schiele H, Krummaker S, Hoffmann P, Kowalski R (2022) The “research world café” as method of scientific enquiry: Combining rigor with relevance and speed. J Bus Res 140:280–296. https://doi.org/10.1016/j.jbusres.2021.10.075 DOI: https://doi.org/10.1016/j.jbusres.2021.10.075
Stassart PM, Ph B, J-Cl G, Th H (2012) L’agroécologie : trajectoire et potentiel Pour une transition vers des systèmes alimentaires durables. 21 DOI: https://doi.org/10.3917/edagri.vanda.2012.01.0025
Sterk B, van Ittersum MK, Leeuwis C, Wijnands FG (2007) Prototyping and farm system modelling—Partners on the road towards more sustainable farm systems? Eur J Agron 26:401–409. https://doi.org/10.1016/j.eja.2006.12.006 DOI: https://doi.org/10.1016/j.eja.2006.12.006
Tittonell P (2020a) Assessing resilience and adaptability in agroecological transitions. Agric Syst 184:102862. https://doi.org/10.1016/j.agsy.2020.102862
Tittonell P (2020b) Assessing resilience and adaptability in agroecological transitions. Agric Syst 184:102862. https://doi.org/10.1016/j.agsy.2020.102862 DOI: https://doi.org/10.1016/j.agsy.2020.102862
Trabelsi M (2017) Comment mesurer la performance agroécologique d’une exploitation agricole pour l’accompagner dans son processus de transition? Phd thesis, Université Paul Valéry - Montpellier III
Trabelsi M, Mandart E, Le Grusse P, Bord J-P (2019) ESSIMAGE: a tool for the assessment of the agroecological performance of agricultural production systems. Environ Sci Pollut Res 26:9257–9280. https://doi.org/10.1007/s11356-019-04387-9 DOI: https://doi.org/10.1007/s11356-019-04387-9
Van Cauwenbergh N, Biala K, Bielders C, et al (2007) SAFE—A hierarchical framework for assessing the sustainability of agricultural systems. Agric Ecosyst Environ 120:229–242. https://doi.org/10.1016/j.agee.2006.09.006 DOI: https://doi.org/10.1016/j.agee.2006.09.006
Van der Ploeg JD, Barjolle D, Bruil J, et al (2019) The economic potential of agroecology: Empirical evidence from Europe. J Rural Stud 71:46–61. https://doi.org/10.1016/j.jrurstud.2019.09.003 DOI: https://doi.org/10.1016/j.jrurstud.2019.09.003
Van Meensel J, Lauwers L, Kempen I, et al (2012) Effect of a participatory approach on the successful development of agricultural decision support systems: The case of Pigs2win. Decis Support Syst 54:164–172. https://doi.org/10.1016/j.dss.2012.05.002 DOI: https://doi.org/10.1016/j.dss.2012.05.002
Vereijken P (1997) A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. Eur J Agron 16. https://doi.org/10.1016/S1161-0301(97)00039-7 DOI: https://doi.org/10.1016/S0378-519X(97)80029-3
Wezel A, Herren BG, Kerr RB, et al (2020) Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron Sustain Dev 40:40. https://doi.org/10.1007/s13593-020-00646-z DOI: https://doi.org/10.1007/s13593-020-00646-z
Wezel A, Soldat V (2009) A quantitative and qualitative historical analysis of the scientific discipline of agroecology. Int J Agric Sustain 7:3–18. https://doi.org/10.3763/ijas.2009.0400 DOI: https://doi.org/10.3763/ijas.2009.0400
WFP (2011) Senegal Comprehensive Food Security and Vulnerability Analysis
Wiget M, Muller A, Hilbeck A (2020) Main challenges and key features of indicator-based agroecological assessment frameworks in the context of international cooperation. Ecol Soc 25:25. https://doi.org/10.5751/ES-11774-250325 DOI: https://doi.org/10.5751/ES-11774-250325
Zahm F, Alonso Ugaglia A, Barbier J-M, et al (2019) Évaluer la durabilité des exploitations agricoles. La méthode IDEA v4, un cadre conceptuel combinant dimensions et propriétés de la durabilité. Cah Agric 28:5. https://doi.org/10.1051/cagri/2019004 DOI: https://doi.org/10.1051/cagri/2019004

How to Cite

Darmaun, M., Hossard, L., de Tourdonnet, S., Chotte, J.-L., Lairez, J., Scopel, E., Faye, N. F., Chapuis-Lardy, L., Ndienor, M., Cissé, M. F. N., & Chevallier, T. (2023). Co-designing a method to assess agroecological transitions: results of a case study in Senegal. Italian Journal of Agronomy, 18(4). https://doi.org/10.4081/ija.2023.2195